针对传统水下目标磁定位时因未考虑海平面波动造成磁场信号测量不准确进而引起磁定位误差较大的问题,通过在原有测磁深度上叠加海平面在该处的铅直位移,将叠加后的深度引入仿真模型的系数矩阵中,再利用仿真模型计算测量深度中包含海面波动的测量点处的磁场,以该磁场作为磁定位的数据源。采用三维Longuet-Higgins 模型描述10个组成波形成的波面运动,分析组成波中最大振幅取0.5 m和1 m两种情况。仿真结果表明,其对应的波面铅直位移在某些点处将大于2 m和4 m。船模试验证实,在不考虑舰船在海面波动下产生的纵倾横摇对磁场测量的影响的条件下,当组成波的最大振幅小于0.5 m,波面的最大铅直位移小于2 m时,海平面波动对磁定位结果的影响不大。
In order to solve the problem of inaccurate measurement of magnetic field signal caused by the failure to consider sea level fluctuations in the magnetic positioning of traditional underwater targets, the lead direct displacement of sea level at the original magnetic measurement depth was superimposed, and the superimposed depth was introduced into the coefficient matrix of the simulation model, and then the simulation model was used to calculate the magnetic field at the measurement point containing sea surface fluctuation in the measurement depth, and the magnetic field was used as the data source for magnetic positioning. The three-dimensional Longuet-Higgins model was used to describe the wave surface motion of 10 component waves, and the maximum amplitude of the component waves was 0.5 m and 1 m. The simulation results show that the corresponding straight displacement of the lead on the wave surface will be greater than 2 meters and 4 meters at some points. The ship model test confirms that the sea level fluctuation has little effect on the magnetic positioning results when the maximum amplitude of the component wave is less than 0.5 m and the maximum lead straight displacement of the wave surface is less than 2 m, without considering the influence of the pitch roll of the ship under sea surface fluctuation on the magnetic field measurement.
2024,46(21): 143-149 收稿日期:2023-12-6
DOI:10.3404/j.issn.1672-7649.2024.21.025
分类号:TJ610
基金项目:湖北省教育厅科研计划项目(B2019363);国家自然科学基金资助项目(41476153);武汉城市学院重点科研项目(2022CYZDKY002)
作者简介:刘德红(1980-),男,博士,讲师,研究方向为电磁场理论与应用
参考文献:
[1] 李国栋, 刘琪, 姜润翔. 铁磁性舰船壳体对低频磁场屏蔽作用研究[J]. 舰船科学技术, 2023, 45(20): 62-66.
LI Guodong, LIU Qi, JIANG Runxiang. Research on the shielding effect of ferromagnetic ship on low-frequency magnetic fields[J]. Ship Science and Technology, 2023, 45(20): 62-66.
[2] 赵文春, 欧阳剑锋, 刘胜道, 等. 舰船上方拱顶磁场等效面磁荷推算[J]. 中国舰船研究, 2022, 17(6): 182-186.
ZHAO Wenchun, OUYANG Jianfeng, LIU Shengdao, et al. Calculation of vaulted magnetic field above ship using equivalent surface magnetic charge[J]. Chinese Journal of Ship Research, 2022, 17(6): 182-186.
[3] 周义勇, 冷相文, 李博. 水雷磁引信目标探测识别策略研究[J]. 自动化与仪器仪表, 2021(12): 4-7.
ZHOU Yiyong, LENG Xiangwen, LI Bo. Elementary introduction to target detection and recognition method of mine magneticfuze[J]. Automation & Instrumentation, 2021(12): 4-7.
[4] 李永强, 赵琪, 李铁, 等. 基于多物理场的舰船目标识别方法[J]. 探测与控制学报, 2018, 40(1): 11-16.
LI Yongqiang, ZHAO QI, LI Tie, et al. Ship detection and recognition method based on multi-physical fields[J]. Journal of Detection & Control, 2018, 40(1): 11-16.
[5] 郭成豹, 胡松, 王文井, 等. 利用磁传感器阵列磁场差值的舰船磁场反演建模方法[J]. 兵工学报, 2022, 43(1): 111-119.
GUO Cheng-bao, HU Song, WANG Wen-jing, et al. Ship magnetic field inversion modeling method utilizing the magnetic field difference between magnetic sensors[J]. Acta Armamentarii, 2022, 43(1): 111-119.
[6] 刘琪, 孙兆龙, 姜润翔. 基于最小均方误差的磁场反演及磁场评估算法研究[J]. 华中科技大学学报(自然科学版), 2023, 51(8): 142-148.
LIU Qi, SUN Zhaolong, JIANG Runxiang. Research on magnetic field inversion and magnetic field evaluation algorithm based on minimum mean square error[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2023, 51(8): 142-148.
[7] 何保委, 刘胜道, 赵文春, 等. 改进的内外映射法推算潜艇外部感应磁场[J]. 舰船科学技术, 2020, 42(11): 172-175.
HE Baowei, LIU Shengdao, ZHAO Wenchun, et al. Extrapolation of submarine's external induced magnetic field by improved internal and external reflection method[J]. Ship Science and Technology, 2020, 42(11): 172-175.
[8] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法[J]. 物理学报, 2021, 70(16): 147-159.
DAI Zhonghua, ZHOU Suihua, ZHANG Xiaobing. Multi-objective optimization of ship magnetic field modeling method[J]. Acta Phys. Sin., 2021, 70(16): 147-159.
[9] 刘胜道, 张明, 赵文春, 等. 舰船磁场动态检测中舰船航迹测量方法研究[J]. 海军工程大学学报, 2019, 31(2): 1-5.
LIU Shengdao, ZHANG Ming, ZHAO Wenchun, et al. Research on image matching and location method for warship dynamic magnetic measurement[J]. Journal of Naval University of Engineering, 2019, 31(2): 1-5.
[10] 刘奇付, 李紫艳. 舰船磁定位算法实现及计算分析[J]. 舰船科学技术, 2016, 38(2): 58-60.
LIU Qifu, LI Ziyan. Ship magnetic positioning algorithms and computational analysis[J]. Ship Science and Technology, 2016, 38(2): 58-60.
[11] 王玉芬, 周国华, 吴轲娜, 等. 消磁站水下磁传感器定位方法研究[J]. 电工技术学报, 2023, 1(1): 101-110.
WANG Yufen, ZHOU Guohua, WU Kena, et al. Research on localization method for underwater magnetic sensors in the fixed deperming station[J]. Transactions of China Electrotechnical Society, 2023, 1(1): 101-110.
[12] 綦志刚, 李冰, 苏毅, 等. 水下航行器下潜时的深度控制仿真研究[J]. 舰船科学技术, 2023, 45(8): 90-96.
QI Zhigang, LI Bing, SU Yi, et al. Research on depth control of underwater robot and its simulation when diving[J]. Ship Science and Technology, 2023, 45(8): 90-96.
[13] 李杨, 徐雪峰, 赵光. 基于扩展状态观测器的海浪滤波算法及仿真[J]. 中国舰船研究, 2020, 15(S1): 1-5.
LI Yang, XU Xuefeng, ZHAO Guang. Wave filtering algorithm and simulation based on extended state observer[J]. Chinese Journal of Ship Research, 2020, 15(S1): 1-5.
[14] 郑祥靖, 李雪丁, 徐啸, 等. 台湾海峡海浪数值模拟和特征分析[J]. 海洋预报, 2021, 38(5): 31-39.
ZHENG Xiangjing, LI Xueding, XU Xiao, et al. Numerical simulation and characteristic analysis of ocean waves in the Taiwan Strait[J]. Marine Forecasts, 2021, 38(5): 31-39.
[15] 文圣常, 余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1984.
[16] 徐德伦, 于定勇. 随机海浪理论[M]. 北京: 高等教育出版社, 2001.