针对弹性连接的多模块箱型浮式防波堤的结构强度分析,本文提出一种新的模型约束方法,将多模块箱型浮式防波堤间的弹性连接结构简化为弹簧并实现载荷传递,在每个模块的止链器处采用弹性约束以防止其发生刚性位移并模拟锚链的约束作用,采用三维势流理论对超长箱型浮式防波堤进行载荷计算和强度分析。结果表明,每个箱型浮式防波堤模块在中部因中垂现象产生较大应力,相比其他模块中间模块和两端模块的应力较大,并通过和刚性连接结构强度分析对比发现,由于刚性连接结构无法释放自由度,采用弹性连接计算所得的应力结果要比采用刚性连接结构的小62.07%。本文研究成果可为今后多模块浮式防波堤的结构强度校核提供参考。
A new model constraint method is proposed for the structural strength analysis of elastically connected multi-module box-type floating breakwaters. The elastic connection structure between multi-module box-type floating breakwaters is simplified as a spring and realizes load transfer. The elastic restraint is used on the chain stopper of each module to prevent rigid displacement and to simulate the restraining action of the anchor chain. Three-dimensional potential flow theory is used to calculate the load and analyze the strength of the super-long box floating breakwater. The results show that the middle sag phenomenon produces a large stress in the middle of each box-type floating breakwater module. Compared with other modules, the stress of the middle module and the two-end module is larger. Because the rigid connection structure can not release the degree of freedom, the stress result calculated by the elastic connection is 62.07% less than that by the rigid connection structure. The research results of this paper can provide reference for structural strength check of multi-module floating breakwater in the future.
2024,46(21): 150-156 收稿日期:2024-1-15
DOI:10.3404/j.issn.1672-7649.2024.21.026
分类号:U656.6
基金项目:江苏省自然科学基金青年项目(BK20220653)
作者简介:王海军(1999-),男,硕士,研究方向为海工结构强度
参考文献:
[1] 查恩尧, 李静怡, 黎维祥, 等. 防波堤建设必要性的一种新型研究思路[J]. 中国水运, 2013, 13(10): 169-171.
[2] 沈雨生, 周益人, 潘军宁, 等. 浮式防波堤研究进展[J]. 水利水运工程学报, 2016(5): 124-132.
SHENG Yusheng, ZHOU Yiren, PAN Junning, et al. Research progress of floating breakwaters[J]. Hydro-Science and Engineering, 2016(5): 124-132.
[3] WU Y S. Hydroelasticity of floating bodies[D]. London: University of Brunel, 1984.
[4] 崔维成. 超大型海洋浮式结构水弹性响应预报的研究现状和发展方向[J]. 船舶力学, 2002, 6(1): 73-90.
[5] TEMAREL P. Hydroelasticity of ships: Taking stock and moving forward[C]//The 22nd Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures. Istanbul, Turkey, 2008.
[6] 杨鹏, 顾学康. 超大型浮体模块水弹性响应和结构强度分析[J]. 船舶力学, 2015, 19(5): 553-565.
[7] GAO R P, TAY Z Y, WANG C M, et al. Hydroelastic response of very large floating structure with a flexible line connection[J]. Ocean Engineering, 2011, 38(17): 1957-1966.
[8] HUANG H, CHEN X J, LIU J Y, et al. A method to predict hydroelastic responses of VLFS under waves and moving loads[J]. Ocean engineering, 2022, (247-Mar. 1).
[9] SONG Y J. A method to estimate dynamic responses of VLFS based on multi-floating-module model connected by elastic hinges[J]. 中国海洋工程:(英文版), 2021, 35(5): 687-699.
[10] 刘海霞. 半潜式平台结构强度分析中的波浪载荷计算[J]. 中国海洋平台, 2003, 18(2): 1-4.
[11] 葛江涛, 嵇春艳, 郭建廷, 等. 弧型布置的浮式防波堤水动力响应分析[J]. 船舶工程, 2021, 43(9): 152-157.
GE Jiangtao, JI Chunyan, GUO Jianting, et al. Hydrodynamic Response Analysis of Floating Breakwater with Arc Arrangement[J]. Ship Engineering, 2021, 43(9): 152-157.
[12] HUO F L. Design and Overall strength analysis of multi-functional elastic connections floating breakwater system[J]. Shanghai Jiao Tong Univ. (Sci. ), 2022, 27(3): 326-338.
[13] 徐玉崇. 浮式防波堤关键部位结构强度研究[D]. 镇江: 江苏科技大学, 2018.
[14] 毛向前, 郭建廷, 嵇春艳, 等. 弧型布局浮式防波堤波浪载荷特性分析[J]. 舰船科学技术, 2022, 44(15): 92-99
MAO Xiangqian, GUO Jianting T, JI Chunyan, et al. Wave load analysis of floating breakwater with arc-shaped layout[J]. Ship Science and Technology, 2022, 44(15): 92-99.
[15] NORSKE V. recommended practice DNV-RP-C 103 column-stabilised units[S]. 2005.