为解决传统的自升式风电安装船难以满足浮式风机的安装要求问题,参考起重船的参数,设计了漂浮式海上风电安装船。建立了风电安装船-吊臂-吊钩-叶片系统多刚体模型和浮式风机系统单刚体模型,编写了数值仿真程序,计算了不同海况等级下进行吊装作业时叶根与轮毂之间相对位置的变化。结果表明,海况等级的提高会使叶根与轮毂之间的相对运动标准差增大,应尽量避免在高等级海况下进行海上浮式风机叶片安装作业,且应避免在横浪条件下进行侧吊安装作业,以防叶根与轮毂的纵荡运动幅值过大或发生碰撞。
In order to solve the problem that the traditional jack-up wind power installation ship is difficult to meet the installation requirements of floating wind turbines, a floating offshore wind power installation ship is designed with reference to the parameters of the crane ship. A multi-rigid body model of wind power installation ship-boom-hook-blade system and a single rigid body model of floating wind turbine system are established, and a numerical simulation program is written to calculate the changes of relative positions between the blade root and the hub when lifting operation is carried out under different sea state levels. The results show that the standard deviation of the relative motion between the blade root and the hub increases with the increase of sea state level, and the blade installation of floating wind turbine should be avoided under the high sea state level, and the side lifting installation should be avoided under the condition of transverse waves, in order to prevent the amplitude of longitudinal oscillatory motion between the blade root and the hub from being too large or collision.
2024,46(21): 163-169 收稿日期:2024-1-17
DOI:10.3404/j.issn.1672-7649.2024.21.028
分类号:U662.3
基金项目:广西科技重大专项资助项目(AA22068105)
作者简介:金伟晨(1991-),男,硕士,工程师,研究方向为海上风力发电装备的安全性与经济性
参考文献:
[1] 高巍, 董楠, 齐晓亮, 等. Bentley MOSES 软件入门与应用[M]. 北京: 中国水利水电出版社, 2020.
[2] 王太锋. 浅析海上大容量风电机组安装工程技术[J]. 水电与新能源, 2023, 37(3): 49-52.
[3] 周胡, 李书兴, 张大勇, 等. 近海风机浮托安装的总体过程[J]. 船舶工程, 2020, 42(S1): 538-541.
ZHOU Hu, LI Shuxing, ZHANG Dayong et al. General process of floating support installation for offshore wind turbines[J]. Ship Engineering, 2020, 42(S1): 538-541.
[4] 周桐. 全回转起重船多系统耦合动力学特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[5] PARK K P, CHA J H, LEE K Y. Dynamic factor analysis considering elastic boom effects in heavy lifting operations[J]. Ocean Engineering, 2011, 38(1): 1100-1113.
[6] 骆寒冰, 谢芃, 季红叶, 等. 东海涌浪环境下大型起重船吊装组块耦合运动响应数值模拟研究[C]//中国造船工程学会船舶力学学术委员会,《船舶力学》编委会, 中国船舶科学研究中心, 2017.
[7] ZHAO Y, CHENG Z, SANDVIK P C, et al. An integrated dynamic analysis method for simulating installation of single blades for wind turbines[J]. Ocean Engineering, 2018, 152: 72-88.
[8] 朱明, 张鹏, 朱昌明. 起重船-风机吊装系统动力学模型仿真分析[J]. 机械设计与制造, 2019(10): 50-53.
[9] 刘延柱. 多体系统动力学[M]. 北京: 高等教育出版社, 2014.
[10] 肖昌水. 海上浮式风机气动载荷及刚—柔耦合动力响应研究[D]. 天津: 天津大学, 2020.
[11] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the Semisubmersible Floating System for Phase II of OC4[J]. Scitech Connect Definition of the Floating System for Phase IV of Oc3, 2014.
[12] 周绪强. 基于三维势流理论的浮托驳船安装设计[J]. 中国海洋平台, 2022, 37(5): 62-68.
[13] 于波, 于景龙, 闻增鑫, 等. 多场耦合下风电机组偏航系统疲劳载荷分析[J]. 可再生能源, 2023, 41(12): 1619-1625.
[14] 项婷婷, 王国栋. 基于悬链线理论的系泊系统的应用[J]. 合肥学院学报(综合版), 2021, 38(2): 5-10.