以及时发现船舶底面结构变形,确保船舶在良好状态下运行为目的,研究基于传感器感知信息的船舶底面结构变形检测方法。该方法使用不锈钢封装光纤光栅传感器后,选择8路光纤,在每路光纤上连接若干光纤光栅传感器,然后将8路光纤布设在船舶底面结构上,通过每路光纤上连接的光纤光栅传感器感知船舶底面结构光栅信号,再通过非平衡M-Z干涉法对光纤光栅传感器光栅信号进行解调,得到船舶底面结构应变信息,以其为基础同时结合光纤光栅传感器感知应变状态方程,建立多感知信息融合的变形检测模型,求解该模型后得到船舶底面结构变形检测结果。实验表明:该方法可准确感知船舶底面结构应变信息,且传感器信号零漂波动较小,同时可有效实现船舶底面结构变形检测,应用效果较佳。
In order to timely detect the deformation of the ship's bottom structure and ensure that the ship operates in good condition, a sensor based method for detecting the deformation of the ship's bottom structure is studied. After using stainless steel encapsulated fiber optic grating sensors, this method selects 8 optical fibers and connects several fiber optic grating sensors to each fiber. Then, the 8 optical fibers are laid on the bottom structure of the ship, and the grating signals of the ship's bottom structure are sensed by the fiber optic grating sensors connected to each fiber optic fiber. The grating signals of the fiber optic grating sensors are then demodulated by the unbalanced M-Z interference method to obtain the strain information of the ship's bottom structure. Based on this, combined with the strain state equation sensed by the fiber optic grating sensors, a multi sensing information fusion deformation detection model is established. After solving the model, the deformation detection results of the ship's bottom structure are obtained. The experiment shows that this method can accurately perceive the strain information of the ship's bottom structure, and the sensor signal has small zero drift fluctuations. At the same time, it can effectively detect the deformation of the ship's bottom structure, and the application effect is good.
2024,46(21): 170-173 收稿日期:2024-5-23
DOI:10.3404/j.issn.1672-7649.2024.21.029
分类号:TP391
作者简介:王秋锋(1985-),男,副教授,研究方向为智能控制技术
参考文献:
[1] 王泽平, 胡志强, 刘昆, 等. 球鼻船艏斜撞船舶舷侧结构的变形机理研究[J]. 振动与冲击, 2022, 41(11): 10-17.
WANG Zeping, HU Zhiqiang, LIU Kun, et al. Research on the deformation mechanism of ship side structure impacted obliquely by a bulbous bow[J]. Journal of Vibration and Shock, 2022, 41(11): 10-17.
[2] 刘维勤, 屈毫拓, 黄宇, 等. 集装箱船在波浪下的结构动态崩溃数值仿真研究[J]. 中国航海, 2022, 45(1): 43-49.
LIU Weiqin, QU Haotuo, HUANG Yu, et al. Simulation study of dynamic collapse of container ship structure under the action of wave[J]. Navigation of China, 2022, 45(1): 43-49.
[3] 闫宏生, 白超迪, 贾同宇, 等. 逆有限元法在船体加筋板结构变形重构中的应用[J]. 中国造船, 2023, 64(1): 168-179.
YAN Hongsheng, BAI Chaodi, JIA Tongyu, et al. Application of inverse finite element in structural deformation reconstruction of ship reinforced plate[J]. Shipbuilding of China, 2023, 64(1): 168-179.
[4] 王杰, 王景焘, 黄超, 等. 一种面向舰船结构毁伤的大变形流固耦合数值计算方法[J]. 计算力学学报, 2024, 41(2): 335-343.
WANG Jie, WANG Jingtao, HUANG Chao, et al. A numerical method for fluid-structure interaction with large deformation towards the damage of warship structures[J]. Chinese Journal of Computational Mechanics, 2024, 41(2): 335-343.
[5] 陈富康, 袁昱超, 薛鸿祥, 等. 船首-冰层碰撞下的船体结构变形及损伤模式演化[J]. 船舶工程, 2023, 45(7): 47-53.
CHEN Fukang, YUAN Yuchao, XUE Hongxiang, et al. Hull structural deformation and damage evolution under bow-ice collision[J]. Ship Engineering, 2023, 45(7): 47-53.
[6] 陈恒强, 徐海峰. 某滚装船船体变形案例分析及建造经验[J]. 船舶工程, 2023, 45(1): 129-136.
CHEN Hengqiang, XU Haifeng. Case analysis and construction experience of hull deformation of a ro-ro ship[J]. Ship Engineering, 2023, 45(1): 129-136.