随着船舶数量的增长和数据信息的日益复杂,船舶在港口的周转时间变长,严重影响船舶航行效率和港口环境可持续性。本文对船舶数据中心高效能调度算法进行研究,基于混合整数线性规划模型对调度目标进行定义,提出结合MILP模型的自适应模拟退火算法流程,并对自适应模拟退火算法、遗传算法、模拟退火算法进行仿真对比,提出船舶数据的多层次编码方案。仿真结果表明高效能调度算法能够显著减少船舶的总等待时间,提高泊位利用率,并有效提升准时率。
With the increase of the number of ships and the increasing complexity of data information, the turnaround time of ships in the port becomes longer, which seriously affects the efficiency of ship navigation and the sustainability of the port environment. In this paper, the high-efficiency scheduling algorithm of ship data center is studied, the scheduling target is defined based on mixed integer linear programming model, and an adaptive simulated annealing algorithm process combined with MILP model is proposed. Moreover, the adaptive simulated annealing algorithm, genetic algorithm and simulated annealing algorithm are simulated and compared, and a multi-level coding scheme of ship data is proposed. The simulation results show that the efficient scheduling algorithm can significantly reduce the total waiting time of ships, improve the utilization rate of berths, and effectively improve the on-time rate.
2024,46(21): 174-177 收稿日期:2024-5-20
DOI:10.3404/j.issn.1672-7649.2024.21.030
分类号:U667.65
基金项目:教育部产学合作协同育人项目(231002695252242)
作者简介:周飞凤(1985-),女,硕士,讲师,研究方向为计算机算法
参考文献:
[1] 徐东红, 李彬, 齐勇. 面向云数据中心基于改进A2C算法的任务调度策略[J/OL]. 计算机科学, 2024, 1-15.
[2] 陈富强. 网络中计算任务调度建模与算法研究[D]. 成都: 电子科技大学, 2024.
[3] 王立红, 张延华, 孟德彬, 等. 基于DDPG算法的云数据中心任务节能调度研究[J]. 高技术通讯, 2023, 33(9): 927-936.
[4] 曾磊, 白金明, 刘琦. 多群落粒子群优化供应链数据中心任务调度[J]. 应用科学学报, 2023, 41(3): 419-430.
[5] 马璐, 刘铭, 李超, 等. 面向6G边缘网络的云边协同计算任务调度算法[J]. 北京邮电大学学报, 2020, 43(6): 66-73.
[6] 孟嘉, 厉文婕, 于广荣, 等. 面向效用最大化的数据中心动态资源分配[J]. 计算机应用研究, 2021, 38(6): 1728-1733+1779.