为快速完成多舱室船体设计信息查询,为舱室船体设计提供决策依据,研究云环境下多舱室船体设计信息快速查询方法。该方法分析多舱室船体设计信息类别,在云环境下,为满足多舱室船体设计信息的动态分配和扩展需求,信息池以Goldenx列式存储引擎为支撑,并采用FCM聚类算法分类多舱室船体设计信息后进行存储;用户端通过信息交换路线连接客户端接口访问信息池,通过多属性决策算法计算信息的效用值,以此快速查询信息池中的多舱室船体设计信息。测试结果显示:该方法能够较好的完成信息聚类,并且依据输入的检索向量,快速完成所需信息的检索,查询覆盖率均在0.92以上,满足多舱室船体设计信息快速查询需求。
In order to quickly complete the query of multi cabin ship design information and provide decision-making basis for cabin ship design, a fast query method for multi cabin ship design information in cloud environment is studied. This method analyzes the categories of multi cabin ship design information. In the cloud environment, to meet the dynamic allocation and expansion needs of multi cabin ship design information, the information pool is supported by the Goldenx column storage engine and FCM clustering algorithm is used to classify and store the multi cabin ship design information; The user side connects to the client interface through an information exchange route to access the information pool, and calculates the utility value of the information through a multi-attribute decision-making algorithm to quickly query the multi cabin ship design information in the information pool. The test results show that this method can effectively cluster information and quickly retrieve the required information based on the input retrieval vector. The query coverage is above 0.92, meeting the fast query requirements for multi cabin ship design information.
2024,46(21): 178-181 收稿日期:2024-5-9
DOI:10.3404/j.issn.1672-7649.2024.21.031
分类号:U418
作者简介:李洲君(1984-),女,硕士,讲师,研究方向为视觉传达设计及多媒体设计
参考文献:
[1] 梁家健, 程海刚, 苏元凯, 等. 400客位游船总体设计及综合性能分析[J]. 船海工程, 2023, 52(5): 45-50.
LIANG Jiajian, CHENG Haigang, SU Yuankai, et al. Overall design and comprehensive performance analysis of 400-passenger cruise ship[J]. Ship & Ocean Engineering, 2023, 52(5): 45-50.
[2] 蒋祎莹, 张丽平, 金飞虎, 等. 空间数据库中混合数据组最近邻查询[J]. 计算机科学与探索, 2022, 16(2): 348-358.
JIANG Yiying, ZHANG Liping, JIN Feihu, et al. Groups nearest neighbor query of mixed data in spatial database[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(2): 348-358.
[3] 刘炜, 王栋, 佘维, 等. 一种面向区块链溯源的高效查询方法[J]. 应用科学学报, 2022, 40(4): 623-638.
LIU Wei, WANG Dong, SHE Wei, et al. An Efficient query method for blockchain traceability[J]. Journal of Applied Sciences, 2022, 40(4): 623-638.
[4] 房俊, 赵博, 左昌麒. 基于两阶段分层抽样的近似聚合查询方法[J]. 数据采集与处理, 2022, 37(5): 1049-1058.
FANG Jun, ZHAO Bo, ZUO Changqi. Approximate aggregate query method based on two?stage stratified sampling[J]. Journal of Data Acquisition & Processing, 2022, 37(5): 1049-1058.
[5] 白文超, 韩希先, 王金宝. 基于条件生成模型的高效近似查询处理框架[J]. 浙江大学学报(工学版), 2022, 56(5): 995-1005.
BAI Wenchao, HAN Xixian, WANG Jinbao. Efficient approximate query processing framework based on conditional generative model[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 995-1005.
[6] FUJITA, YUUKI, FUJIMOTO, et al. Query transfer method using different two skip graphs for searching spatially-autocorrelated data[J]. IEICE Transactions on communications, 2022, 105(2): 205-214.