考虑舰船阻力性能受船体参数及航行环境条件的综合影响,数据类型繁多且复杂,最小阻力估算难度较大,研究基于智能学习的舰船最小阻力估算算法。此算法使用RANS控制方程和湍流模型分析舰船运动状态,由重叠网格技术分析舰船运动时粘性流场信息后,将舰船船型参数与运动状态数据、流场数据,作为基于GRNN智能优化学习的舰船最小阻力估算模型输入向量,在改进果蝇优化算法寻优设置GRNN的平滑因子后,利用此网络构建最小阻力估算模型,学习拟合舰船阻力与输入向量之间关系,输出最小阻力估算结果。实验结果显示:在舰船纵倾与升沉运动中,所提算法估算的最小阻力较准确。
Considering the comprehensive influence of ship parameters and navigation environment conditions on the resistance performance of ships, there are numerous and complex data types, and the difficulty of estimating the minimum resistance is high. Therefore, research is needed on an intelligent learning based algorithm for estimating the minimum resistance of ships. This algorithm uses RANS control equations and turbulence models to analyze the motion state of ships. After analyzing the viscous flow field information during ship motion using overlapping grid technology, the ship type parameters, motion state data, and flow field data are used as input vectors for the ship minimum resistance estimation model based on GRNN intelligent optimization learning. After improving the fruit fly optimization algorithm to optimize and set the smoothing factor of GRNN, this network is used to construct the minimum resistance estimation model, learn and fit the relationship between ship resistance and input vector, and output the minimum resistance estimation result. The experimental results show that the proposed algorithm estimates the minimum resistance accurately in the longitudinal tilt and heave motion of the ship.
2024,46(21): 182-185 收稿日期:2024-5-7
DOI:10.3404/j.issn.1672-7649.2024.21.032
分类号:TP391
作者简介:曹玲玲(1984-),女,硕士,讲师,研究方向为图像处理技术
参考文献:
[1] 唐湘杰, 邹明, 邹早建, 等. 碎冰航道中航行船舶阻力数值预报[J]. 振动与冲击, 2023, 42(23): 293-299,306.
TANG Xiangjie, ZOU Ming, ZOU Zaojian, et al. Numerical prediction of resistance for navigation ships in broken ice channel[J]. Journal of Vibration and Shock, 2023, 42(23): 293-299,306.
[2] 许光祥, 范小寒, 马超峰, 等. 基于澜沧江实船试验对兹万科夫船舶阻力计算方法的修正[J]. 船海工程, 2023, 52(1): 56-61.
XU Guangxiang, FAN Xiaohan, MA Chaofeng, et al. Modification of the Эиванков ship resistance calculation method based on real ship test in lancang river[J]. Ship & Ocean Engineering, 2023, 52(1): 56-61.
[3] 姚智, 李德江, 徐刚, 等. 月池开放和封闭状态下钻井船阻力性能试验研究[J]. 中国舰船研究, 2023, 18(2): 176-183.
YAO Zhi, LI Dejiang, XU Gang, et al. Experimental study of drillship resistance performance in open and closed state of moonpool[J]. Chinese Journal of Ship Research, 2023, 18(2): 176-183.
[4] WACKERS J, DENG G, RAYMOND C, et al. Adaptive grid refinement for ship resistance computations[J]. Oceanengineering, 2022, 250(Apr.15): 110969.1-110969.14.
[5] 段亦隆, 苏绍娟, 马立天, 等. 基于船舶阻力近似模型的球艏与舭部优化设计[J]. 船舶工程, 2022, 44(8): 59-65,72.
DUAN Yilong, SU Shaojuan, MA Litian, et al. Optimal design of bow and bilge based on ship resistance approximate model[J]. Ship Engineering, 2022, 44(8): 59-65,72.
[6] 郑兴, 田治宗, 谢志刚, 等. 基于SPH方法的黄河破冰船冰阻力数值模拟分析[J]. 中国舰船研究, 2022, 17(3): 49-57,84.
ZHENG Xing, TIAN Zhizong, XIE Zhigang, et al. Numerical simulation analysis of ice resistance of icebreaker on Yellow River using SPH method[J]. Chinese Journal of Ship Research, 2022, 17(3): 49-57,84.