大功率吊舱推进器作为一种新型且复杂的船体推进系统,其研发设计、制造试验均需要研判所涉及关键技术的发展进程。针对我国大功率吊舱推进器的研制现状,基于大功率吊舱推进器技术分解结构,建立了大功率吊舱推进器技术体系,并明确了关键技术,引入技术成熟度评价方法开展大功率吊舱推进器关键技术成熟度评估工作。结果表明,我国的大功率吊舱推进器成熟度总体上水平仍然较低,在个别领域仍处于技术发展期的初级阶段,该项工作对控制大功率吊舱推进器研制过程中的技术风险具有一定意义,也为相关承研单位制定技术提升计划奠定了坚实的基础,对国内的大功率吊舱推进器研发、设计和制造具有一定的指导和参考作用。
As a new and complex hull propulsion system, the design, manufacturing and testing of high-power pod thruster need to study and judge the technological development process of the critical technologies involved. In view of the current development status of high-power pod thruster in China, based on the technical decomposition structure of high-power pod thruster, the technology system of high-power pod thruster was established, and clarified the critical technologies, and introduced the technology readiness method to carry out the assessment of the technology readiness level (TRL) of critical technologies of high-power pod thruster. The assessment results show that the technology readiness level of high-power pod thruster in China is still relatively low in general, and is still in the primary stage of technology development in individual fields. The work has certain significance for controlling the technical risk in the development process of high-power pod thruster. It is also a solid foundation for the relevant contractors to formulate technology enhancement plan, and has a certain guidance and reference role for the development, design and manufacture of domestic high-power pod thruster.
2024,46(22): 1-7 收稿日期:2024-1-23
DOI:10.3404/j.issn.1672-7649.2024.22.001
分类号:U661
基金项目:国家重点研发计划项目(2022YFC2806300);天津市交通运输科技发展项目(2022-48)
作者简介:杜尊峰(1984-),男,博士,副教授,研究方向为船舶推进节能装置设计
参考文献:
[1] 王松, 郑安宾. 吊舱式电力推进器现状及发展方向[J]. 船舶工程, 2023, 45(3): 14-19.
WANG Song ZHENG Anbin. Current status and development direction of pod electrical propulsor[J]. Ship Engineering, 2023, 45(3): 14-19.
[2] 沈兴荣, 蔡跃进, 蔡荣泉, 等. 吊舱式推进器水动力性能研究综述[J]. 船舶力学, 2011, 15(S1): 189-197.
SHEN Xingrong, CAI Yuejin, CAI Rongquan, et al. Summarization of hydrodynamics performance study of podded propulsor[J]. Journal of Ship Mechanics, 2011, 15(S1): 189-197.
[3] 刘洪梅, 许文兵, 陈雄, 等. 吊舱推进与传统推进船舶操纵性能对比分析[J]. 船舶力学, 2011, 15(5): 463-467.
LIU Hongmei, XU Wenbing, CHENG Xiong, et al. Maneuvering performance comparison between POD and conventional ships[J]. Journal of Ship Mechanics, 2011, 15(5): 463-467.
[4] 吴家鸣. 几种常见特殊舰船推进器的特点分析[J]. 船舶, 2012, 23(4): 1-6.
WU Jiaming. Characteristic analysis of several special propellers on ships[J]. Ship & Boat, 2012, 23(4): 1-6.
[5] 马聘. 吊舱推进技术[M]. 上海: 上海交通大学出版社, 2007.
[6] 张华健. 吊舱推进船舶航向航速联合控制[D]. 大连: 大连海事大学, 2022.
[7] 唐文彪, 张聪, 欧阳武, 等. 大型船舶吊舱推进器发展现状[J]. 舰船科学技术, 2020, 42(4): 8-12.
TANG Wenbiao, ZHANG Cong, OUYANG Wu, et al. Development status of large-scale ship pod propeller[J]. Ship Science and Technology, 2020, 42(4): 8-12.
[8] 郭宇, 张海军, 薛璐, 等. 工程机械可靠性工程技术体系及其关键技术[J]. 中国工程机械学报, 2023, 21(4): 298-302.
[9] 卜广志. 武器装备体系的技术成熟度评估方法[J]. 系统工程理论与实践, 2011, 31(10): 1994-2000.
[10] 张新国. 国防装备系统工程中的成熟度理论与应用[M]. 北京: 国防工业出版社, 2013.
[11] 朱宁, 杜晓明, 田书超, 等. IETM技术体系构建研究[J]. 装甲兵工程学院学报, 2013, 27(5): 66-69.
[12] 何磊, 程文渊, 宋刚, 等. 大型舰船海水管路系统技术成熟度评价研究[J]. 舰船科学技术, 2021, 43(9): 84-87.
HE Lei, CHEN Wenyuan, SONG Gang, et al. Technology readiness assessment for large ship seawater piping systems[J]. Ship Science and Technology, 2021, 43(9): 84-87.