基于CFD软件STAR–CCM+,以KCS船模及KP505桨模为研究对象,考虑气泡与水的相互作用力,利用船体建模的方法,基于欧拉多相流,通过改变孔内通气量、通气孔的位置和螺旋桨转速对船桨耦合的船模气泡减阻进行数值模拟。结果表明,孔位置一定时,高通气量下,气泡对螺旋桨影响更显著,使得螺旋桨产生振动与噪声,推力减小;通过改变通气孔位置可以得出,通气孔排布在船尾位置时气泡对螺旋桨影响最小;通过改变螺旋桨转速得出,螺旋桨转速越大气泡对螺旋桨影响越小。
Based on CFD software STAR–CCM+, KCS ship model and KP505 propeller model are taken as research objects. Considering the bubble-water interaction force. Using the method of hull modeling, based on the Eulerian multiphase flow, numerical simulation of bubble drag reduction of ship model coupled with propeller is carried out by varying the amount of ventilation in the holes, the position of ventilation holes, and the rotational speed of the propeller. The results show that when the hole position is fixed, the air bubbles have a greater impact on the propeller at high air flow, causing vibration and noise; by changing the position of the vent hole, it is possible to conclude that the air bubbles have the least effect on the propeller when the vent hole is arranged at the transom position.
2024,46(22): 23-28 收稿日期:2024-1-30
DOI:10.3404/j.issn.1672-7649.2024.22.004
分类号:U664
基金项目:国家自然科学基金资助项目(51709133)
作者简介:吴斌(1999-),男,硕士,研究方向为计算流体力学
参考文献:
[1] BHWA, C Y O, C Q Y. Numerical study on the influence of air layer for propeller performance of large ships-ScienceDirect[J]. Ocean Engineering, Volume 195, 2020, 106681: 0029-8018.
[2] 赵超. 平底型船底表面复合减阻特性数值模拟研究[D]. 青岛: 青岛科技大学, 2022.
[3] 傅慧萍, THAD J M, PABLO M C.一种基于体积力螺旋桨模型的自航计算方法[J]. 船舶力学, 2015, 19(7): 791-796.
FU Huiping, THAD J M, PABLO M C. A self-propelled calculation method based on volume force propeller model[J]. Ship Mechanics, 2015, 19(7): 791-796.
[4] 李晓植. 螺旋桨盘面比对KCS船自航性能的影响研究[D]. 武汉:华中科技大学, 2019.
[5] 王明哲, 王建华, 万德成. 用螺旋桨体积力模型数值模拟船舶自航[C]//第十六届全国水动力学学术会议暨第三十二届全国水动力学研讨会论文集(下册) , 2021.
[6] 于子涵, 邹早建. 螺旋桨对船舶操纵运动水动力影响的数值研究[J]. 哈尔滨工程大学学报, 2023, 44(5): 724-733.
YU Zihan, ZOU Zaojian. Numerical study on the hydrodynamic effect of propeller on ship maneuvering motion[J]. Journal of Harbin Engineering University, 2023, 44(5): 724-733.
[7] 吴召华, 陈作钢, 代燚. 基于体积力法的船体自航性能数值预报[J]. 上海交通大学学报, 2013, 47(6): 943-949.
WU Zhaohua, CHEN Zuogang, DAI Ying. Numerical prediction of hull self-propelled performance based on volume force method[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 943-949.
[8] 李国定, 古文贤. 螺旋桨推力减额分数t值的研究[J]. 大连海运学院学报, 1990(3): 251-254.
LI Guoding, GU Wenxian. Study on t-value of propeller thrust derating fraction[J]. Journal of Dalian Maritime Transportation College, 1990(3): 251-254.
[9] JEONG S J, HONG S Y, SONG J H, et al. Numerical method to determine the cavitation inception speed of a submarine propeller based on the noise obtained from bubble dynamics[J]. Ocean Engineering, 2022, 245: 110-464.
[10] SIMO A M, MARC P, STEVEN L C. On the energy economics of air lubrication drag reduction[J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(4): 412-422.
[11] SEONG H P, INWON L. Optimization of drag reduction effect of air lubrication for a tanker model, International[J]. Journal of Naval Architecture and Ocean Engineering, 2018, 10(4): 427-438.
[12] YOUNG R K, SVERRE S. Potential energy savings of air lubrication technology on merchant ships[J]. International Journal of Naval Architecture and Ocean Engineering, 2023, 15(2): 100-530.
[13] EVSEEV A R. Effect of static pressure on friction reduction at gas saturation on turbulent boundary layer[J]. Journal of Physics Conference, 2018, 6(2): 1128.
[14] 聂聃, 张佳宁, 董国祥, 等. 基于规则波的KCS船舶阻力与最小主机功率分析[C]//中国造船工程学会船舶力学学术委员会第九次全体会议文集, 2018.
[15] 沈兴荣, 冯学梅, 蔡荣泉. 大型集装箱船桨舵干扰黏性流场的数值计算研究[J]. 船舶力学, 2009, 13(4): 540-550.
SHEN Xingrong, FENG Xuemei, CAI Rongquan. Numerical computational study on the viscous flow field of large container ship with paddle rudder interference[J]. Ship Mechanics, 2009, 13(4): 540-550.
[16] 祝启波. 基于船—桨—舵全耦合求解的船舶自航性能数值预报方法研究[D]. 镇江: 江苏科技大学, 2017.
[17] 盛振邦, 刘应中. 船舶原理(上)[M]. 上海: 上海交通大学出版社. 2003.
[18] 魏艳. 微气泡减阻数值模拟及其机理分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.