设计一种新型空气减阻装置,基于数值模拟法和理论分析法开展船舶空气减阻机理和空气减阻性能研究。通过分析船底喷气前后船体表面湍流粘度、动力粘度、剪切力分布等关键物理量的动态变化过程,揭示了空气减阻相关机理。对比船底通气前后船体总阻力的变化,探索了空气减阻的相关性能。研究结果表明,在船底持续释放空气后,船体表面流体密度降低、湍流粘度和动力粘度降低、雷诺应力减小,导致船体摩擦阻力减小。在设计航速、较低通气速率(3.92×10-4 kg/s)下空气减阻性能达到了9.53%,减阻效果明显,为绿色船舶设计提供了参考。
A new type of air drag reduction device was designed. Based on numerical simulation method and theoretical analysis method, the mechanism and performance of ship air drag reduction were studied. By analyzing the dynamic change process of key physical quantities such as turbulent viscosity, dynamic viscosity and shear force distribution on the hull surface before and after the bottom jet, the mechanism of air drag reduction is revealed. The changes of the total resistance of the hull before and after the bottom ventilation are compared, and the related performance of air drag reduction is explored. The results show that after the continuous release of air at the bottom of the ship, the fluid density, turbulent viscosity and dynamic viscosity of the hull surface decrease, the Reynolds stress decreases, and the friction resistance of the hull decreases. At the design speed and low ventilation rate (3.92×10–4 kg/s), the air drag reduction performance reaches 9.53%, and the drag reduction effect is obvious, which provides a reference for green ship design.
2024,46(22): 57-61 收稿日期:2024-1-17
DOI:10.3404/j.issn.1672-7649.2024.22.010
分类号:U661.1
基金项目:江苏省自然科学基金资助项目(BK20231255);江苏省科技成果转化专项资金项目(BA2021064)
作者简介:欧阳梅花(1977-),女,高级工程师,研究方向船舶与工程设计
参考文献:
[1] HARTMUT H L. A simple model for gas bubble drag reduction[J]. The Physics of Fluids, 1984, 27(12): 2788-2790.
[2] MADAVAN N K, DEUTSCH S, MERKLE C. Measurements of local skin friction in a microbubble-modified turbulent boundarylayer[J]. Journal of Fluid Mechanics, 1985, 156(-1).
[3] MADAVAN N K, DEUTSCH S, MERKLE C L. Reduction of turbulent skin friction by microbubbles[J]. The Physics of Fluids, 1984, 27(2): 356-363.
[4] CONROY-COLTON J, MANDLI-KYLE T, KUBATKO-ETHAN J. Quantifying air–water turbulence with moment field equations[J]. Journal of Fluid Mechanics, 2021, 917(439).
[5] EVSEEV A R, TSEV L-I-Mal. Effect of microbubble gas saturation on near-wall turbulence and drag reduction[J]. Journal of Engineering Thermophysics, 2018, 27(2).
[6] FERRANTE ANTONINO, SAID ELGHOBASHI. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles[J]. Journal of Fluid Mechanics, 2004, 503.
[7] 董文才, 郭日修, 朱凤荣, 等. 平板湍流边界层内气泡流流动实验研究[J]. 海军工程大学学报, 2001(3): 34-37.
[8] 董文才, 郭日修. 气幕减阻研究进展[J]. 船舶力学, 1998(5): 73-78.
[9] 陈少峰, 高丽瑾, 恽秋琴, 等. 基于EEDI的气层减阻技术评价方法研究[J]. 中国造船, 2018, 59(2): 1-8.