通过自行开发的测试装置并利用船模拖曳水池开展吊舱在不同舵角下水动力性能和动态载荷试验研究,为吊舱的整体结构和固有特性评估提供依据。试验测量吊舱在不同舵角下水动力性能,归纳和总结出吊舱整体推力、扭矩等参数随舵角变化的规律;并通过关键叶片动态载荷的测试,获得不同叶倍频时脉动力的幅值变化规律。通过试验测试方法获得的测试数据能有效地解析实际吊舱的操纵方式,验证吊舱推进设计的合理性,并为后续不同类型吊舱的开发提供了一种可行的性能预报方法。
In this paper, the dynamic performance and dynamic load tests of the azimuthal pod thruster at different rudder angles are carried out by using the self-developed test equipment and the towing tank of the ship model, which provides a basis for the evaluation of the overall structure and inherent characteristics of the azimuthal pod thruster. The launching hydrodynamic performance of the azimuthal pod thruster at different rudder angles is measured, and the rule of the overall thrust and torque of the azimuthal pod thruster change with the rudder angles is summarized. Through the test of the dynamic load of the key blade, the amplitude variation law of the pulse dynamic at different blade frequency doubling is obtained. Moreover, the test data obtained by the method can be effectively applied to analyze the control mode of the azimuthal pod thruster and verify the design effectiveness of the azimuthal pod thruster. It also provides a feasible performance prediction method for the subsequent development of different types of azimuthal pod thruster.
2024,46(22): 62-68 收稿日期:2024-1-8
DOI:10.3404/j.issn.1672-7649.2024.22.011
分类号:U664.3
基金项目:中国船舶集团有限公司第七一一研究所所发项目(H2023BFZ-002-DZ06)
作者简介:罗晓园(1983-),男,硕士,研究员,研究方向为船用推进器水动力计算
参考文献:
[1] 高海波, 高孝洪, 陈辉, 等. 吊舱式电力推进装置的发展及应用[J]. 武汉理工大学学报(交通科学与工程版), 2006, 30(1): 77-80.
[2] CARLTON J S . Chapter 15 - azimuthing and podded propulsors[M]. Marine Propellers and Propulsion. Elsevier Ltd., 2012.
[3] HU J, ZHAO W, CHEN C G, et al. Numerical simulation on the hydrodynamic performance of an azimuthing pushing podded propulsor in reverse flow and rotation [J]. Applied Ocean Research, 2020(104): 102338.
[4] 马震宇. 船舶推进器的发展与展望[J]. 硅谷, 2013(9): 6-7.
[5] 马骋, 钱正芳, 陈科, 等. 单桨吊舱水动力性能数值预报方法研究[J]. 中国造船, 2014(9): 156-165.
[6] SÁNCHEZ-Caja A, RAUTAHEIMO P, SALMINEN E, et al. Computation of the incompressible viscous flow around a tractor thruster using a sliding mesh technique[J]. Proceedings of the 7th International Conference in Numerical Ship Hydrodynamics , 1999: 156-161.
[7] LOBACHEV M P, TCHITCHERINE L A. The full-scale resistance estimation for podded propulsion system by RANS method[J]. Proceeding of the International Symposium on Ship Propulsin, 2001: 97-102.
[8] MOCTAR O E, ANDREAS J. Numerical analysis of the steering capabilities of a podded drive[J]. Ship Technology Research, 2004: 51-55.
[9] 胡健, 赵旺, 王子斌, 等. 连续摆动吊舱推进器水动力性能数值模拟[J]. 哈尔滨工程大学学报, 2021, 42(2): 186-192.
[10] 盛立, 熊鹰. 混合式CRP吊舱水动力性能数值模拟及试验[J]. 南京航空航天大学学报, 2012(2): 184-190.
[11] 贺伟, 陈克强, 李子如. 串列式吊舱操 舵工况水动力试验研究[J]. 华中科技大学学报(自然科学版), 2015, 43(1): 107-111.
[12] 赵大刚, 郭春雨, 苏玉民, 等. L型吊舱自航及操舵工况水动力性能试验研究[J]. 上海交通大学学报, 2017, 51(7): 813-818.
[13] 沈兴荣, 孙群, 卫燕清, 等. 舵角工况下吊舱性能试验研究[J]. 中国造船, 2016, 57(3): 10-18.
[14] 曹梅亮, 王根禄, 朱鸣. 吊舱式推进装置水 动力性能试验研究[J]. 上海交通大学学报, 2003, 37(8): 1198-1200.
[15] 熊鹰, 盛立, 杨勇. 吊舱式推进器偏转工况下水动力性能[J]. 上海交通大学学报, 2013(6): 956-961.
[16] 曹建, 苏玉明, 赵金鑫, 等. 水下无人航行器外挂吊舱水动力试验及操纵性分析[J]. 船舶力学, 2017, 21(8): 969-975.