针对水下自主机器人(AUV)在洋流等外部未知环境干扰和自身附加质量变动情况下的轨迹跟踪问题,基于反步法的自适应滑模控制策略,设计了一种自适应滑膜控制器,可以有效地解决轨迹跟踪偏差问题。本文采用T观测器对输入进行补偿,同时采用反步自适应法对不确定项进行补偿,减少轨迹跟踪误差,提高了AUV 的抗干扰能力,实现轨迹的实时控制。
Aiming at the trajectory tracking problem of the underwater autonomous robot (AUV) under the external unknown environmental disturbances such as ocean currents and the change of its own additional mass, this paper designs an adaptive sliding mode controller based on the adaptive sliding mode control strategy of the backstepping method, which can effectively solve the trajectory tracking deviation problem. The paper adopts the T-observer to compensate the input, and the backstepping adaptive method to compensate the uncertainty term, which reduces the trajectory tracking error, improves the anti-interference ability of the AUV, and realizes the real-time control of the trajectory.
2024,46(22): 89-93 收稿日期:2024-1-18
DOI:10.3404/j.issn.1672-7649.2024.22.016
分类号:U661.33+1
基金项目:国家自然科学基金资助项目(52371277)
作者简介:杨昆(1997-)男,硕士研究生,研究方向为船舶测试系统技术、水下航行器轨迹控制
参考文献:
[1] 朱帅. 海洋开发, 水下机器人大有可为[J]. 中国工业评论, 2017(8): 72-76.
[2] 秦洪德, 孙延超. AUV关键技术与发展趋势[J]. 舰船科学技术, 2020, 42(23): 25-28.
[3] SHEN C, SHI Y, BUCKHAM B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control[J]. IEEE Trans Ind Electron, 2017,65(7): 5796–5805.
[4] 刘海洋. 基于反步法的四旋翼无人机轨迹跟踪控制算法研究[D]. 青岛: 山东科技大学, 2019.
[5] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles[J]. Ocean Engineering 2017, 129: 613–625.
[6] 马琼雄, 余润笙, 石振宇, 等. 基于深度强化学习的水下机器人最优轨迹控制[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 118-123.
[7] 武建国, 刘杰, 陈凯. 时变干扰下AUV三维轨迹跟踪反步滑模控制[J]. 舰船科学技术, 2022, 44(7): 82-87.
[8] 王金强, 王聪, 魏英杰, 等. 欠驱动AUV 自适应神经网络反步滑模跟踪控制[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 12-17.
[9] 刘丽萍, 王红燕. 基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 745-753.
[10] ZHANG G C, HUANG H, QIN H D, et al. A novel adaptive second o-rder sliding mode path following control for a portable AUV[J]. Ocean Engineering, 2018, 151(151): 82-92.
[11] YAN Z P, YANG Z W, ZHANG J Z, et al. Trajector tracking control of UUV based on back stepping sliding mode with fuzzy switching gain in diving plane [J]. IEEE Access, 2019(7) 166788-166795.
[12] 曹晓明, 魏勇, 衡辉, 等. 海流扰动下无人水下航行器的动态面反演轨迹跟踪控制[J]. 系统工程与电子技术, 2021, 43(6): 1664-1672.
[13] 张伟, 滕延斌, 魏世琳, 等. 欠驱动UUV自适应RBF神经网络反步跟踪控制[J]. 哈尔滨工程大学学报, 2018, 39(1): 97-103.
[14] 杜吉庆, 周丹. 六自由度欠驱动AUV系统建模技术研究[J]. 常州信息职业技术学院学报, 2022, 21(5): 26-32.
[15] ANTONELLI G. On the use of adaptive/integral actions for six-degrees-of-freedom control of autonomous underwater vehicles[J]. IEEE Journal of Ocean Engineening 2007,32(2): 300–312.