大型深海运载器保持水平姿态无动力自由下潜过程中会产生横滚现象,影响后续运载器深海着陆坐底,为探究不改变运载器外形的条件下净浮力、稳心高和初始横滚角等可变参数对运载器下潜姿态的影响,使用基于二次本构关系(Quadratic Constitutive Relation,QCR)的SST k-omega方法,对深海运载器无动力下潜运动姿态进行计算。结果表明,在外形确定的情况下净浮力与稳心高会影响横滚角幅值与下潜速度,初始横滚角仅在下潜初期2个周期内有影响,不影响运载器横滚角幅值。并根据仿真结果拟合出横滚角幅值小于5°的净浮力与稳心高可选区域,以指导运载器与着陆器设计。
In the process of free diving without power, a large deep-sea vehicle maintaining a horizontal attitude will produce a rolling phenomenon, which will affect the subsequent deep-sea landing of the vehicle on the bottom. In order to explore the influence of variable parameters such as net buoyancy, metacentric height and initial roll Angle on the submerged attitude of the vehicle without changing the shape of the vehicle, SST k-omega method based on Quadratic Constitutive Relation (QCR) was used to calculate the unpowered diving posture of a deep-sea vehicle. The results show that: The net buoyancy and metacentric height will affect the roll Angle amplitude and diving speed when the shape is determined, and the initial roll Angle only affects the initial 2 cycles of diving, but does not affect the roll Angle amplitude of the vehicle. According to the simulation results, the optional regions of net buoyancy and metacentric height with roll Angle amplitude less than 5° are fitted to guide the design of vehicle and lander.
2024,46(22): 110-117 收稿日期:2023-9-25
DOI:10.3404/j.issn.1672-7649.2024.22.020
分类号:U674.941
基金项目:十三五预研项目(2020107/2002);中国科学院基础研究计划资助项目(E3290904);国家重点研发计划资助项目(2022YFB3808805)
作者简介:谷海涛(1981-),男,研究员,研究方向为海洋机器人总体技术.
参考文献:
[1] 刘佳, 郎继超. 深海着陆器无动力下潜技术发展现状[J]. 舰船科学技术, 2022, 44(24): 107-113.
LIU Jia, LANG Jichao. Development status of unpowered diving motion of deep-sea lander[J]. Ship Science and Technology, 2022, 44(24): 107-113.
[2] 高伟, 李天辰, 谷海涛, 等. 深海AUV无动力下潜运动特性研究[J]. 机器人, 2021, 43(6): 674-683.
GAO Wei, LI Tianchen, GU Haitao, et al. Unpowered diving motion characteristics of deep-sea autonomous underwater vehicle[J]. Robot, 2021, 43(6): 674-683.
[3] ANDERSEN A, PESAVENTO U, WANG Z J. Unsteady aerodynamics of fluttering and tumbling plates[J]. Journal of Fluid Mechanics, 2005, 541: 65-90.
[4] JIN C Q, XU K. Numerical study of the unsteady aerodynamics of freely falling plates[J]. Communications in Computational Physics, 2008, 3(4): 834-851.
[5] WAN H, DONG H, LIANG Z. Vortex formation of freely falling plates[C]// Aiaa Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 2013.
[6] KUBOTA Y, MOCHIZUKI O J. Numerical investigation of aerodynamic characteristics by a rotating thin plate[J], 2015, 5(3): 42–47.
[7] 周琪. 自由下落平板非定常致力机理研究[D]. 上海: 上海交通大学, 2012.
[8] 张翔. 无动力水下潜航器自由下潜的运动学及致力机理研究[D]. 武汉: 华中科技大学, 2021.
[9] 王远成, 吴文权. 基于RNG k-ε湍流模型钝体绕流的数值模拟[J]. 上海理工大学学报, 2004(6): 519-523.
WANG Yuancheng, WU Wenquan. Numerical simulation of flow around blunt bodies using RNG k-ε turbulence model[J]. Journal of University of Shanghai for Science and Technology, 2004(6): 519-523.
[10] 魏自言, 李杰, 杨钊. 某验证机角隅分离数值计算及优化 [J/OL]. 应用力学学报, 2023.2.27.
WEI Ziyan, LI Jie, YANG Zhao. Numerical simulation and optimization of junction separation for a verification aircraft [J/OL]. Chinese Journal of Applied Mechanics, 2023.2.27.
[11] MANI M, BABCOCK D A, WINKLER C M, et al. Predictions of a supersonic turbulent flow in a square duct[C]// 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition 2013, vol. 15: 51st AIAA (American Institute of Aeronautics and Astronautics) aerospace sciences meeting including the new horizons forum and aerospace exposition, Grapevine, Texas, USA, 2013: 12747–12765.
[12] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263.
[13] 赵辉, 张耀冰, 陈江涛, 等. 考虑二次本构关系的湍流模型对翼身组合体阻力预测的影响分析[J]. 空气动力学学报, 2020, 38(5): 901-907.
ZHAO Hui, ZHANG Yaobing, CHEN Jiangtao, et al. The effects of quadratic constitutive relation of turbulence modelson the drag prediction of wing-body configuration[J]. Acta Aerodynamica Sinica, 2020, 38(5): 901-907.
[14] 盛振邦, 刘应中. 船舶原理. (下册)[M]. 上海: 上海交大出版社, 2005: 378–381.