下一代舰船电力系统应具备快速自重构和自愈能力,如何在舰船受到损伤情况下,实现电力系统高韧性运行具有重要意义。本文采用Matlab建立舰船电力系统网络Simulink仿真模型,对电网及设备运行性能进行模拟,采用Java建立JSON文件格式的电网拓扑结构图,采用舰船电网量化性能指标,对电网受损后的运行能力进行整体评估,建立基于遗传算法的电网损伤重构模型,分析舰船电力系统在典型损伤场景下的可重构性。本文研究为提高舰船电力系统的可靠性和韧性建立了基础。
The next generation of ship power systems should have fast self reconstruction and self-healing capabilities. It is of great significance to achieve high resilience operation of power systems in the event of damage to ships. This article uses Matlab to establish a Simulink simulation model for ship power system network, simulate the operation performance of the power grid and equipment, use Java to establish a JSON file format power grid topology diagram, use ship power grid quantitative performance indicators to evaluate the overall operation ability of the power grid after damage, establish a genetic algorithm based power grid damage reconstruction model, and analyze the reconfigurability of ship power system in typical damage scenarios. This study establishes a foundation for improving the reliability and resilience of ship power systems.
2024,46(22): 130-135 收稿日期:2024-1-31
DOI:10.3404/j.issn.1672-7649.2024.22.023
分类号:TK421
作者简介:柯强军(1998-),男,硕士研究生,研究方向为舰船动力装置仿真
参考文献:
[1] 刘胜, 王天骐, 张兰勇. 船舶中压直流电力系统配电网络重构技术研究[J]. 舰船科学技术, 2020, 42(1): 116-122.
LIU Sheng, WANG Tianqi, ZHANG Lanyong. Research on the network reconfiguration of power distribution in the medium voltage dc power system on ships[J]. Ship Science and Technology, 2020, 42(1): 116-122.
[2] 张馨悦, 肖健梅, 王锡淮. 基于改进灰狼优化算法的舰船电力系统故障重构[J]. 中国舰船研究, 2023, 18(2): 251-259.
ZHANG Xinyue, XIAO Jianmei, WANG Xihuai. Fault reconfiguration of ship power system based on improved grey wolf optimization algorithm[J]. Chinese Journal of Ship Research, 2023, 18(2): 251-259.
[3] 邵飞帆, 段倩倩. 基于改进粒子群算法的舰船电力系统网络重构[J]. 制造业自动化, 2022, 44(10): 100-103.
SHAO Feifan, DUAN Qianqian. Network reconfiguration of ship power system based on improved particle swarm optimization algorithm[J]. Manufacturing Automation, 2022, 44(10): 100-103.
[4] CRAMER A M, SUDHOFF S D, ZIVI E L. Performance metrics for electric warship integrated engineering plant battle damage response[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 634-646.
[5] 韩思宁, 杨军, 詹祥澎, 等. 考虑可靠性约束的舰船电力系统故障重构策略[J]. 电力系统保护与控制, 2020, 48(13): 14-21.
HAN Sining, YANG Jun, ZHAN Xiangpeng, et al. Fault reconfiguration strategy of a shipboard power system considering reliability constraints[J]. Power System Protection and Control, 2020, 48(13): 14-21.
[6] WANG J, WU H, LI F, et al. Optimal power system reconfiguration for electric ship considering time-varying load and energy storage[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 470-483.
[7] 申伟. 改进遗传算法的舰船电力系统无功优化[J]. 舰船科学技术, 2021, 43(10): 73-75.
SHEN Wei. Reactive power optimization of ship power system with improved genetic algorithm[J]. Ship Science and Technology, 2021, 43(10): 73-75.
[8] ZHU W, SHI J, ZHI P, et al. Distributed reconfiguration of a hybrid shipboard power system[J]. IEEE Transactions on Power Systems, 2020, 36(1): 4-16.
[9] HE J, YANG L, ZHANG L, et al. Reliability-oriented optimal reconfiguration of shipboard power system considering energy storage[J]. Applied Energy, 2020, 261: 114293.
[10] LIANG Z, ZHU W, SHI J, et al. Ship integrated power system reconfiguration research under partial observation[J]. Energy Reports, 2022, 8(5): 444-452.
[11] WANG Z, LI Y, WANG Y, et al. Shipboard power system reconfiguration strategy considering uncertainties[J]. IEEE Transactions on Power Systems, 2021, 36(6): 4574-4586.
[12] 梁正卓, 朱琬璐, 朱志宇, 等. 船舶综合电力系统重构技术现状及展望[J]. 中国舰船研究, 2022, 17(6): 36-47.
LIANG Zhengzhuo, ZHU Wanlu, ZHU Zhiyu, et al. Situation and prospects of shipboard integrated power system reconfiguration technology[J]. Chinese Journal of Ship Research, 2022, 17(6): 36-47.
[13] GAO X, LIU J, ZHU X, et al. A hybrid optimization algorithm for shipboard power system reconfiguration[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6223-6231.
[14] ZHAO Y, XU J, WU X, et al. A novel approach for shipboard power system reconfiguration based on multi-agent system[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2826-2835.
[15] ZHANG W, SHI W, ZHUO J. BDI-agent-based quantum-behaved PSO for shipboard power system reconfiguration[J]. International Journal of Computer Applications in Technology, 2017, 55(1): 4-11.