以舰船四点角接触球轴承为研究对象,以轴承加速寿命为目标,在滚动轴承动力学、赫兹接触理论及弹性流体动力润滑理论基础上,综合考虑轴承各元件间相互作用、钢球与保持架间碰撞、轴承润滑状态等关键因素,建立四点接触球轴承动力学微分方程组,采用S-R变步长自适应积分算法求解动力学方程组。结合滚动轴承加速寿命理论,以动力学分析结果为边界输入,基于材料本构关系,使用Ansys 以及nCode有限元分析软件建立四点角接触球轴承保持架疲劳寿命估计模型,根据确定的强化因子,采用改变负荷和转速的形式完成对轴承疲劳寿命的评估。研究表明,当量动负荷对轴承加速寿命的影响最大,其次是轴向负荷;转速和径向负荷对轴承加速寿命影响最小;转速对保持架寿命的影响最大。
The four-point angular contact ball bearing of ship is taken as the research object, and the accelerated life of bearing is taken as the goal. Based on the dynamics of rolling bearings, Hertz contact theory and elastohydrodynamic lubrication theory, the key factors such as the interaction between bearing components, the collision between steel balls and cages, and the lubrication state of bearings are comprehensively considered. The dynamic differential equations of four-point contact ball bearing are derived, and the dynamic equations are solved by S-R variable step size adaptive integral algorithm. Combined with the accelerated life theory of rolling bearings, the dynamic analysis results are used as the boundary input. Based on the material constitutive relationship, the fatigue life estimation model of four-point angular contact ball bearing cage is established by using Ansys and nCode finite element analysis software. According to the determined strengthening factor, the fatigue life of the bearing is evaluated by changing the load and speed. The research shows that the equivalent dynamic load has the greatest influence on the accelerated life of the bearing, followed by the axial load, and the speed and radial load have the least influence on the accelerated life of the bearing. The rotational speed has the greatest influence on the life of the cage.
2024,46(22): 136-144 收稿日期:2023-11-22
DOI:10.3404/j.issn.1672-7649.2024.22.024
分类号:TK221
作者简介:宋少雷(1982-),男,工程师,研究方向为轮机工程
参考文献:
[1] 谭源源, 张春华, 陈循. 竞争失效场合步进应力加速试验统计分析 [J]. 航空学报, 2011, (3): 429–437.
[2] 董炳武, 牛荣军, 徐曼君, 等. 高频轻载自润滑关节轴承加速寿命试验方法[J]. 轴承, 2021(3): 21-25.
[3] HAN D. Time and cost constrained optimal designs of constant-stress and step-stress accelerated life tests[J]. Reliability Engineering & System Safety, 2015, 140: 1-14.
[4] 邱明, 李正国, 李迎春. 倾斜摆动条件下衬垫改性对自润滑关节轴承摩擦学性能的影响[J]. 摩擦学学报, 2014, 34(1): 59-64.
[5] HAN D, KUNDU D. Inference for a step-stress model with competing risks for failure from the generalized exponential distribution under type-I censoring[J]. IEEE Transactions on Reliability, 2015, 64(1): 31-43.
[6] BAI D S, CHA M S, CHUNG S W. Optimum simple ramp-tests for the weibull distribution and type-I censoring[J]. Reliability, IEEE Transactions on, 1992, 41(3): 407-413.
[7] 姚龙. 薄壁四点接触球轴承参数化设计与动力学分析[D]. 昆明:昆明理工大学, 2019.
[8] 杨录峰, 马宁, 赵双锁. 一种变步长和变阶计算的自适应数值积分算法[J]. 云南民族大学学报(自然科学版), 2011, 20(1): 32-36+41.
[9] HAGHIGHI F, BAE S J. Reliability estimation from linear degradation and failure time data with competing risks under a step-stress accelerated degradation test[J]. IEEE Transactions on Reliability, 2015, 64(3): 960-971.
[10] 嵇应凤, 姚卫星, 夏天翔. 线性疲劳累积损伤准则适用性评估[J]. 力学与实践, 2015(6): 674-682.
[11] 王奉明, 朱俊强, 徐纲. 航空发动机加速任务与等效应力试验方法研究[J]. 燃气涡轮试验与研究, 2016, 29(3): 1-6.
[12] 师义民, 师小琳. 竞争失效产品部分加速寿命试验的统计分析[J]. 西北工业大学学报, 2017(1): 109-115.
[13] 郑玉彬, 杨斌, 王晓峰. 基于威布尔分布的电主轴加速寿命试验时间设计[J]. 吉林大学学报(工学版), 2018, 48(3): 767-772.
[14] LIU D K, LI Q, HU W G. Fatigue life prediction of the axle box bearings for high-speed trains[J]. Dyna, 2017, 92(5): 538-544.