本文针对某船柴油发电机组增压器振动过大的问题,通过实船测试排查,逐步找出增压器振动的具体原因,主要是增压器废气蜗壳固有频率与柴油发电机组发火频率吻合引起的共振。经过分析给出具体的振动控制措施,通过增加局部支撑强度、减小悬臂质量等措施改变增压器的固有频率。实船测试表明,增压器SD点振动烈度从101.5 mm/s降低到52.9 mm/s;LG点振动烈度从60.2 mm/s降低到35.7 mm/s,证明振动问题得到很好的解决,该研究分析有助于柴油发电机组增压器出现异常振动时的判断、识别以及治理。
Aiming at the problem of excessive vibration of diesel generator set turbocharger on a ship, this paper finds out the specific cause of turbocharger vibration gradually through real ship test and investigation, mainly the resonance caused by the natural frequency of turbocharger volute and the ignition frequency of diesel generator set. By increasing the local support strength and reducing the cantilever mass, the natural frequency of the supercharger is changed. The real ship test shows that the SD point vibration intensity of the turbocharger is reduced from 101.5 mm/s to 52.9 mm/s. The vibration intensity of LG point is reduced from 60.2 mm/s to 35.7 mm/s, which proves that the vibration problem has been solved well. This research analysis is helpful to the judgment, identification and treatment of abnormal vibration in the turbocharger of diesel generator set.
2024,46(22): 145-149 收稿日期:2024-1-4
DOI:10.3404/j.issn.1672-7649.2024.22.025
分类号:U664.121.2
基金项目:中华人民共和国交通运输部资助项目(交规划函[2019]618号)
作者简介:刘永东(1966-),男,高级工程师,研究方向为船舶管理及船舶技术
参考文献:
[1] 曹侠, 田生, 黄守辉, 等. 涡轮增压器减振降噪解决方案[J]. 现代零部件, 2013(8): 70-71.
CAO Xia, TIAN Sheng, HUANG Shouhui, et al. Turbocharger vibration and noise reduction solution[J]. Modern Components, 2013(8): 70-71.
[2] 蔡晓涛, 董佳欢, 黄志武, 等. 科考船主机排烟管系减振设计[J]. 船舶工程, 2022, 44(S1): 360-364.
CAI Xiaotao, DONG Jiahuan, HUANG Zhiwu, et al. Vibration reduction design of exhaust pipe system for main engine of research vessel[J]. Ship Engineering, 2022, 44(S1): 360-364.
[3] 田彪. 一起船舶柴油机增压器损坏的原因分析[J]. 武汉船舶职业技术学院学报, 2022, 21(3): 105-108.
TIAN Biao. Analysis on the causes of supercharger breakdown of a ship diesel engine and countermeasures[J]. Journal of Wuhan Institute of Shipbuilding Technology, 2022, 21(3): 105-108.
[4] 侯彪, 闫小龙, 孙齐虎, 等. 船用柴油机增压器喘振成因研究及对策[J]. 内燃机与动力装置, 2009(S1): 100-103.
HOU Biao, YAN Xiaolong, SUN Qihu, et al. The research on causes and countermeasures of marine diesel engine turbocharger surge[J]. Internal Combustion Engine & Powerplant, 2009(S1): 100-103.
[5] 戎志祥, 宋大为, 朱奎, 等. 高背压柴油机涡轮增压器匹配设计试验[J]. 柴油机, 2023, 45(3): 49-55.
RONG Zhixiang, SONG Dawei, ZHU Kui, et al. Tests on matching design of high back pressure diesel engine turbocharger[J]. Diesel Engine, 2023, 45(3): 49-55.
[6] 周宝金, 夏兵. 主机增压器喘振原因浅析及运行管理[J]. 航海, 2023(1): 63-69.
ZHOU Baojin, XIA Bing. Analysis of the causes of main engine turbocharger surge and its operation management[J]. Navigation, 2023(1): 63-69.
[7] 李向阳, 白雪, 胡志龙, 等. 某船用柴油机增压器涡轮叶片断裂故障分析[J]. 机电设备, 2023, 40(3): 29-32.
LI Xiangyang, BAI Xue, HU Zhilong, et al. Turbine blade fracture analysis of turbocharger for marine diesel engine[J]. Mechanical and Electrical Equipment, 2023, 40(3): 29-32.
[8] 赵思恒, 周航, 周少伟. 基于维纳过程的船舶柴油机增压器寿命预测[J]. 中国舰船研究, 2022, 17(6): 126-132.
ZHAO Siheng, ZHOU Hang, ZHOU Shaowei. Residual life prediction for marine diesel turbocharger based on Wiener process[J]. Chinese Journal of Ship Research, 2022, 17(6): 126-132.
[9] 李广磊, 贝兆彧, 张权, 等. 基于主成分分析的船舶主机状态监测[J]. 船舶工程, 2022, 44(S1): 427-431+471.
LI Guanglei, BEI Zhaoyu, ZHANG Quan, et al. Condition monitoring of marine main engine based on principal component analysis[J]. Ship Engineering, 2022, 44(S1): 427-431+471.
[10] 刘万辉, 吕鹏, 余睿, 等. 无油涡轮增压器的设计及其试验研究[J]. 机械工程学报, 2018, 54(19): 129-136.
LIU Wanhui, LV Peng, YU Rui, et al. Design and experimental research of the oil-free turbocharger[J]. Journal of Mechanical Engineering, 2018, 54(19): 129-136.