为了研究船用柴油机轴系的振动特性问题,提出一种实体模型的有限元仿真方法。利用Ansys进行曲轴自由模态分析,并通过实验模态分析对有限元分析的准确性进行对比验证。在实验验证的基础上,对船舶柴油机曲轴进行约束模态分析和谐响应分析。结果表明,仿真和实验的对比误差大部分小于5%,误差范围符合要求,验证了仿真分析曲轴固有频率结果的准确性。基于谐响应分析,得到曲轴自由端处的幅频响应曲线,给出了共振的频率及区域。该分析方法能为船舶柴油机曲轴非共振点工作区间减振优化设计提供理论依据。
To study the vibration characteristics of the shaft system in marine diesel engines, a finite element simulation method based on a solid model is proposed. Free modal analysis of the crankshaft is conducted using Ansys, and the accuracy of the finite element analysis is compared and verified through experimental modal analysis. Based on the experimental verification, a constrained modal analysis and harmonic response analysis of the marine diesel engine crankshaft are performed. The results show that the comparison error between simulation and experiment is mostly less than 5%, which meets the error requirements and verifies the accuracy of finite element simulation analysis of crankshaft natural frequency results. Based on harmonic response analysis, the amplitude frequency response curves at the free end of the crankshaft were obtained, and the resonance frequency and region were given. This analysis method can provide a theoretical basis for the vibration damping optimization design in the non-resonant working range of the crankshaft in marine diesel engines.
2024,46(22): 150-154 收稿日期:2024-2-9
DOI:10.3404/j.issn.1672-7649.2024.22.026
分类号:U664.121
基金项目:国家自然科学基金资助项目(51805077);浙江省基础公益研究计划项目(LGG21E050009)
作者简介:安亮(1982-),男,硕士,副教授,研究方向为船舶动力装置、动力学与控制
参考文献:
[1] 孙嵩松, 万茂松, 徐晓美, 等. 不同强度理论在曲轴疲劳研究中的对比应用[J]. 中国机械工程, 2019, 30(23): 2784-2789.
SUN songsong, WAN Maosong, XU Xiaomei, et al. Comparable application of different strength criterions in crankshaft fatigue researches[J]. China Mechanical Engineering, 2019, 30(23): 2784-2789.
[2] 聂德耀. 船舶柴油机轴系扭转振动[M]. 北京: 国防工业出版社, 2017.
[3] 郑松, 刘海娥. 摆盘式发动机轴系扭转振动控制建模研究[J]. 舰船科学技术, 2020, 42(14): 103-105.
ZHENG Song, LIU Haie. Research on modeling of torsional vibration control of wobble disk engine shafting[J]. Ship Science and Technology, 2020, 42(14): 103-105.
[4] 冯娜, 周欣, 侯志鹏. 某V型高速柴油机振动测试及动力学分析[J]. 船舶工程, 2021, 43(1): 56-60.
FENG Na, ZHOU Xin, HOU Zhipeng. Vibration test and dynamic analysis of a V-type high speed diesel engine[J]. Ship Engineering, 2021, 43(1): 56-60.
[5] 周玮, 廖日东. 基于模态叠加法的曲轴动态特性研究与结构优化[J]. 农业工程学报, 2015, 31(3): 129-136.
ZHOU Wei, LIAO Ridong. Dynamic characteristic based on modal superposition method and structure optimization of crankshaft[J]. Transactions of The Chinese Society of Agricultural Engineering, 2015, 31(3): 129-136.
[6] SONG M H, PHAM X D, VUONG Q D. Torsional vibration stress and fatigue strength analysis of marine propulsion shafting system based on engine operation patterns[J]. Journal of Marine Science and Engineering, 2020, 8(8): 613.
[7] 刘洁, 卢秋霞. 基于有限元分析的发动机曲轴结构优化研究[J]. 农机化研究, 2022, 44(7): 241-244.
LIU Jie, LU Qiuxia. Research on optimization of engine crankshaft structure based on finite element analysis[J]. Journal of Agricultural Mechanization Research, 2022, 44(7): 241-244.
[8] 全洪兵. 舰船柴油机曲轴轴系多体动力学仿真[J]. 舰船科学技术, 2017, 39(14): 73-75.
QUAN Hongbing. Multi body dynamics simulation analysis of marine diesel engine crankshaft[J]. Ship Science and Technology, 2017, 39(14): 73-75.