基于数据采集和监控、设备健康管理等技术设计了暖通风空调系统监控管理系统(MCMS),实现了对全船HVAC设备的状态监控和运行管理,具备数据采集、传输、HMI可视化监测(监测点近30000个,数据刷新时延小于1 s)、存储管理(历史数据可存储6个月),远程控制、故障诊断报警和节能优化控制等能力。系统具有集成度高、冗余可靠、功能丰富、可扩展性强等特点。
Introduces an HVAC Monitoring, Control, and Management System (MCMS) founded on SCADA, equipment health management, and other technologies. This system facilitates comprehensive status monitoring and operational management of the entire ship's HVAC equipment. With capabilities including data collection, transmission, HMI visual monitoring (supporting nearly 30,000 monitoring points with a data refresh delay of less than 1s), storage management (historical data retention for 6 months), remote control, fault diagnosis alarms, and energy-saving control, the system exhibits high integration, reliable redundancy, rich functionality, and robust scalability.
2024,46(22): 159-164 收稿日期:2024-1-26
DOI:10.3404/j.issn.1672-7649.2024.22.028
分类号:U665.261
作者简介:苏义鑫(1965-),男,博士,教授,研究方向为智能系统与智能控制
参考文献:
[1] 项绍行, 刘明, 钱希鸿. 大型邮轮结构风道设计优化[J]. 船海工程, 2023, 52(3): 48-57.
XIANG Shaohang, LIU Ming, QIAN Xihong. Optimization of structural duct design for large cruise ship[J]. Ship & Ocean Engineering, 2023, 52(3): 48-57.
[2] 郑楠桢, 李正谋, 杨佳乐. 邮轮舱室空调舒适性需求分析[J]. 机电设备, 2021, 38(3): 68-76.
ZHENG Nanzhen, LI Zhengmou, YANG Jiale. Analysis of comfort requirement on cruise air-conditioning[J]. Mechanical and Electrical Equipment, 2021, 38(3): 68-76.
[3] 肖陈俊. 豪华邮轮空调系统技术应用研究[J]. 机电技术, 2018(3): 89-92.
XIAO Chenjun. Research on the application of luxury cruise air conditioning system technology[J]. Mechanical & Electrical Technology, 2018(3): 89-92.
[4] 孙哲, 袁洋, 陈艺琳. 豪华邮轮远程监控系统的设计与应用[J]. 船舶标准化工程师, 2021, 54(2): 82-86.
SUN Zhe, YUAN Yang, CHEN Yilin. Design and application of remote monitoring system on cruise ship[J]. Ship Standardization Engineer, 2021, 54(2): 82-86.
[5] LU Q, XIE X, PARLIKAD A K, et al. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance[J]. Automation in Construction, 2020, 118: 103277.
[6] TANASIEV V, PLUTEANU S, NECULA H, et al. Enhancing monitoring and control of an HVAC system through IoT[J]. Energies, 2022, 15: 924.
[7] RAFATI A, SHAKER H, Ghahghahzadeh Saman. Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring[J]. Energies, 2022, 15(1): 341.
[8] 李勃良. 基于PLC技术和工业现场总线技术的船舶电力监控系统设计[J]. 舰船科学技术, 2020, 42(16): 118-120.
LI Boliang. Design of power monitoring system based on PLC technology and industrial fieldbus technology[J]. Ship Science and Technology, 2020, 42(16): 118-120.
[9] GUNEET B, GANESH K, RAJENDRA S. Development of an IoT-driven building environment for prediction of electric energy consumption[J]. IEEE internet of things journal, 2020, 7(6): 4912-4921.
[10] 杨剑征. 美国海军舰船综合状态评估系统发展研究[J]. 舰船科学技术, 2016, 38(15): 146-148.
YANG Jianzheng. Research on the development of the US navy's integrated condition assessment system[J]. Ship Science and Technology, 2016, 38(15): 146-148.
[11] LIU Luyuan. Design of the comprehensive monitoring system of ro-ro ship power plant based on LabVIEW[J]. Journal of Physics: Conference Series, 2022, 2254: 012037.
[12] MARIANO D, HERNANDEZ L, ZORITA A, et al. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis[J]. Journal of Building Engineering, 2021, 33.
[13] BANG M, ENGELSGAARD S, ALEXANDERSEN E, et al. Novel real-time model-based fault detection method for automatic identification of abnormal energy performance in building ventilation units[J]. Energy Build, 2019, 183: 238-251.
[14] 李丙辉. 基于负荷预测的空调冷冻水系统节能优化研究[D]. 西安: 西安建筑科技大学, 2021.
[15] ESRAFILIAN M, HAGHIGHAT F. Occupancy-based HVAC control systems in buildings: A state-of-the-art review[J]. Building & Environment, 2021, 197: 107810.