在舰船结构毁伤数值仿真模型和算法走向工程应用前,其合理性和有效性必须得到准确的验证与确认。本文借鉴近年来计算结构力学、计算流体力学等相关领域数值仿真模型算法的验证与确认概念、规范、策略、方法,以舰船受水下爆炸作用的响应模型建立与仿真为例,提出远场水下爆炸作用下舰船结构响应仿真的验证与确认方法和典型流程。水下远场爆炸Geers-Hunter气泡模型、模态展开法、逐步法、二维船体梁有限元的程序经过验证与分层确认,仿真模型对船体鞭状响应的应变和弯矩仿真结果与试验结果综合误差因子在0.25以内,该程序对水下远场爆炸脉动压力作用的船体响应预报结果可信。相关流程与基本方法对其他水下爆炸工况下舰船结构毁伤数值仿真模型的验证与确认也有一定借鉴意义。
The numerical simulation models and algorithms of ship structural damage must be verified and validated before the industrial application.This article draws lessons from the recently developed concepts, standards, strategies and methods of verification & validation in relevant areas such as computational structural mechanics(CSM) and computational fluid mechanics(CFD).Taking the response model, of which, a ship subjected to underwater explosion as an example, the methods, strategies and typical procedures have been presented for the verification & validation of the simulation of warship structural response subjected to far field underwater explosion.The Geers-Hunter bubble model of underwater far field explosion, modal expansion method, step-by-step method and two-dimensional hull girder FEM are verified and validated hierarchically, the comprehensive error factors between the simulation results and test results for the strain and torque of the ship whip-like response are within 0.25,the results of the ships response to underwater far field explosion,predicted by the simulation code,is therefore reliable.The methods and procedures proposed by this article could be significant to the verification & validation of the simulation of warship structural damage in other underwater explosion conditions.
2024,46(23): 15-23 收稿日期:2024-2-25
DOI:10.3404/j.issn.1672-7649.2024.23.003
分类号:U674.7;U661.4;O441.4
作者简介:徐嘉启(1991-),男,博士,工程师,研究方向为舰艇结构毁伤与抗冲击
参考文献:
[1] ASME V&V 10-2006, Guide for verification & validation in computational solid mechanics[S]. The American Society of Mechanical Engineers, New York.
[2] ASME V&V 10-2019, Standard for verification and validation in computational solid mechanics[S]. The American Society of Mechanical Engineers, New York.
[3] EÇA L, DOWDING K, ROACHE P J. On the interpretation and scope of the V&V 20 standard for verification and validation in computational fluid dynamics and heat transfer[C]//Proceedings of the ASME 2020 Verification and Validation Symposium, 2020.
[4] STERN F, WILSON R V, COLEMAN H W. Comprehensive approach to verification and validation of CFD simulations-part 1: methodology and procedures[J]. Journal of Fluids Engineering, 2001, 123: 793-802.
[5] 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6): 1165-1172.
ZHAO W, CHEN J T, XIAO W, etal. Advances in the key technologies of verification and validation system of national numerical wind tunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1165-1172.
[6] LIANG X, WANG R L. Verification and validation of detonation modeling[J]. Defense Technology, 2019, 15(3): 398-408.
[7] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究, 2019, 14(3): 1-13.
ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research, 2019, 14(3): 1-13.
[8] 张阿漫, 明付仁, 刘云龙, 等. 水下爆炸载荷特性及其作用下的舰船毁伤与防护研究综述[J]. 中国舰船研究, 2023, 18(3): 139-154+196.
ZHANG A M, MING F R, LIU Y L, et al. Review of research on underwater explosion related to load characteristics and ship damage and protection[J]. Chinese Journal of Ship Research, 2023, 18(3): 139-154+196.
[9] DOEBLING S W. The escape of high explosive products: an exact-solution problem for verification of hydrodynamics codes[J]. Journal of Verification Validation and Uncertainty Quantification, 2016, 1(041001): 1-13.
[10] 陈莹玉. 水下近场爆炸时不同结构形式的壁压与毁伤特性试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[11] LI T, WANG S P, LI S, etal. Numerical investigation of an underwater explosion bubble based on FVM and VOF[J]. Applied Ocean Research, 2018, 74: 49-58.
[12] ZHANG A M, LI S, CUI J. Study on splitting of a toroidal bubble near a rigid boundary[J]. Physics and Fluids, 2015, 27(6): 809-822.
[13] TIAN Z L, LIU Y L, ZHANG A M, etal. Jet development and impact load of underwater explosion bubble on solid wall[J]. Applied Ocean Research, 2020, 95: 102013.
[14] SURESH C, RAMAJEYATHILAGAM K. Coupled fluid-structure interaction based numerical investigation on the large deformation behavior of thin plates subjected to under water explosion[J]. International Journal of Vehicle Structures & Systems, 2020, 12(4): 436-442.
[15] GAN N, LIU L T, YAO X L, etal. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble[J]. Ocean Engineering, 2021, 219: 108308.
[16] WANG L K, ZHANG Z F, WANG S P. Pressure characteristics of bubble collapse near a rigid wall in compressible fluid[J]. Applied Ocean Research, 2016, 59: 183-192.
[17] JIN Z Y, YIN C Y, CHEN Y, etal. Dynamics of an underwater explosion bubble near a sandwich structure[J]. Journal of Fluids and Structures, 2019, 86: 247-265.
[18] 张弩. 水下爆炸气泡作用下船体总纵强度估算方法[J]. 中国舰船研究, 2014, 9(6): 14-18+25.
ZHANG N. The evaluation method of the longitudinal strength of a ship hull subjected to the bubble load in underwater explosion[J]. Chinese Journal of Ship Research, 2014, 9(6): 14-18+25.
[19] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601.
[20] 刁爱民, 李海涛. 水下爆炸作用下船体梁整体运动简化理论模型[J]. 华中科技大学学报(自然科学版), 2016, 44(6): 63-67.
DIAO A, LI H T. Simplified theoretical model for bulk movement of hull girder subjected to underwater explosion[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2016, 44(6): 63-67.
[21] 刘国振, 汪俊, 徐玉崇, 等. 基于属性细分的舰船中远场水下爆炸预报/评价体系初步设计与实现[J]. 装备环境工程, 2023, 20(9): 91-97.
[22] ZHANG A M, LI S M, CUI P. A unified theory for bubble dynamics[J]. Physics of Fluids, 35, 0332, 3: 1-27.
[23] 王海坤, 刘建湖, 潘建强, 等. 水下爆炸载荷作用下舰船鞭状振动的阻尼现象研究[J]. 现代振动与噪声技术, 2011(9): 71-78.
[24] SHIN Y S, HAM I. Damping modeling strategy for naval ship system[D]. USA, Monterey: Naval Postgraduate School, 2003.
[25] RUSSEL D D. Error measures for comparing transient data: part i: development of a comprehensive error measure[C]. 68th Shock and Vibration Symposium Proceedings, Vol. I, 1997.