为解决目前降阶模型缺乏精确性及可交互性问题,提出一种计及结构实际应力状态的模型降阶及修正技术。基于本征正交分解方法创建由载荷-模态系数映射及基底向量组成的变截面梁结构降阶模型,通过试验测点响应数据求解结构实际应力状态下的模态系数进行映射更新,迭代选取最优映射以实现降阶模型的修正,并经由静载及动载试验对修正后的降阶模型进行对比验证。相较传统模型降阶方法,计及实际应力状态的降阶模型在垂弯静载试验中精度优化52.13%,在波浪载荷动载试验中精度优化86.98%,且在保证精度同时提升了84.81%计算效率,为数字孪生中物理和虚拟空间的交互提出一种新的解决思路,进一步满足孪生体结构状态实时性,精确性及可交互性的需求,为实际船舶结构数字孪生体的构建提供技术支撑。
To mitigate the challenges associated with inaccuracy and lack of interactivity in existing model order reduction techniques, a model reduction and correction technique is proposed that incorporates the actual stress state of the structure. Utilizing the proper orthogonal decomposition method, a reduction model for a variable cross section beam structure is developed, which comprises a mapping of a load-modal coefficients and basis vectors. The modal coefficients undergo mapping and updating procedures, which are based on the actual stress state of the structure as determined by response data obtained from testing points. An iterative process is employed to select the most suitable mapping technique and achieve correction for model reduction. The corrected reduced model is validated through static and dynamic testing. Compared to conventional model reduction methods, the model reduction technique that considers the actual stress state achieved an accuracy improvement of 52.13% in bending static tests and 86.98% in wave loading dynamic tests, while increasing computational efficiency by 84.81%. This presents a novel approach to address the interaction of physical and virtual spaces in digital twinning, further meeting the requirements of real-time, accurate, and interactive digital twin structures for ships, thereby offering technical assistance for the development of authentic ship structure digital twins.
2024,46(23): 24-32 收稿日期:2023-12-21
DOI:10.3404/j.issn.1672-7649.2024.23.004
分类号:U661.4
基金项目:基础加强计划重点基础研究资助项目(2020-JCJQ-ZD-225·11)
作者简介:昝一鸣(1999-),男,硕士研究生,研究方向为船体结构设计
参考文献:
[1] 姜劭栋, 张发祥, 李淑娟, 等. 光纤光栅应变传感系统在船舶结构监测中的应用[J]. 半导体光电, 2017, 38(2): 268-270.
JIANG S D, ZHANG F X, LI S J, et al. Application of FBG strain sensing system in ship structure monitoring[J]. Semiconductor Optoelectronics, 2017, 38(2): 268-270.
[2] 汪雪良, 朱全华, 张涛, 等. 船舶结构监测技术研究进展[J]. 船舶力学, 2022, 26(8): 1246-1253.
WANG X L, ZHU Q H, ZHANG T, et al. Progress in studies on ship structure monitoring technique[J]. Journal of Ship Mechanics, 2022, 26(8): 1246-1253.
[3] HIDEAKI M, KAZURO K, HIROSHI N, et al. Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(1): 3-13.
[4] 戴丽华, 王奔, 杨瑜龙. 船舶结构应力与缺陷检测中光纤光栅传感器的应用[J]. 舰船科学技术, 2021, 43(18): 16-18.
DAI L H, WANG B, YANG Y L. Application of fiber bragg grating sensor in ship structure stress and defect detection[J]. Ship Science and Technology, 2021, 43(18): 16-18.
[5] 任慧龙, 唐浩云, 贾连徽, 等. 基于风险的船体结构监测点优化布置[J]. 哈尔滨工程大学学报, 2017, 38(1): 1-7.
REN H L, TANG H Y, JIA L H, et al. Optimal layout of hull structure monitoring points based on risk assessment[J]. Journal of Harbin Engineering University, 2017, 38(1): 1-7.
[6] 杨少龙, 孙延浩, 黄金, 等. 面向任意位置姿态估计的无人艇虚实交互研究[J]. 舰船科学技术, 2021, 43(6): 151-156.
YANG S L, SUN Y H, HUANG J, et al. Research on unmanned surface vehicles' reality-virtual interaction for attitude observing[J]. Ship Science and Technology, 2021, 43(6): 151-156.
[7] 吴文豪, 陈国兵, 杨自春. 数字孪生技术在船舶装备运维中的应用及挑战[J]. 舰船科学技术, 2022, 44(8): 139-144.
WU W H, CHEN G B, YANG Z C, et al. The application and challenge of digital twin technology in ship equipment[J]. Ship Science and Technology, 2022, 44(8): 139-144.
[8] 李澳, 徐言民, 关红旭, 等. 基于数字孪生的测试场景架构及应用研究[J]. 舰船科学技术, 2023, 45(24): 171-175.
LI A, XU Y M, GUAN H X, et al. Digital twin-based test scenario architecture and application research[J]. Ship Science and Technology, 2023, 45(24): 171-175.
[9] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大应用领域[J]. 计算机集成制造系统, 2019, 25(1): 1-25.
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-25.
[10] OMER K K. Ship digital twin architecture for optimizing sailing automation[J]. Ocean Engineering, 2023, 275: 1-12.
[11] MAURO F, KANA A. Digital twin for ship life-cycle: A critical systematic review[J]. Ocean Engineering, 2023, 269: 1-18.
[12] LEE J H, YOON S N, YONGHWAN K, et al. Real-time digital twin for ship operation in waves[J]. Ocean Engineering, 2022, 266(2): 1-20.
[13] LIU Y C, REN H L. Rapid acquisition method for structural strength evaluation stresses of the ship digital twin model[J]. Ocean Engineering, 2023, 285(1): 1-19.
[14] FUJIKUBO M. Research and development of digital twin on ship hull structure[J]. Journal of the Japan Welding Society, 2021, 90(1): 36-43.
[15] NGUYEN, VINH T, CHANDAR D. Ship specific optimization of predict energy saving devices using reduced order models[J]. Applied Ocean Research, 2023, 131: 1-17.
[16] 周建美, 刘文韬, 刘航, 等. 多频可控源电磁法三维有理函数Krylov子空间模型降阶正演算法研究[J]. 地球物理学报, 2018, 61(6): 2525-2536.
ZHOU J M, LIU W T, LIU H, et al. Research on rational Krylov subspace model order reduction algorithm for three-dimensional multi-frequency CSFM modeling[J]. Chinese Journal of Geophysics, 2018, 61(6): 2525-2536.
[17] 李莉, 刘铸永, 洪嘉振. 基于Krylov子空间法的柔性航天器降阶研究[J]. 空间控制技术与应用, 2015, 41(2): 24-29.
LI L, LIU Z Y, HONG J Z. Model order reduction of flexible spacecraft based on Krylov subspace method[J]. Aerospace Control and Application, 2015, 41(2): 24-29.
[18] CLAINCHE L SOLEDAD V, MANUEL J. A review on reduced order modeling using DMD-based methods[J]. International Union of Theoretical and Applied Mechanics Bookseries, 2020, 36: 55-66.
[19] QUINCY A H, MAURICIO E T, JEAN C R, et al. Parametric dynamic mode decomposition for reduced order modeling[J]. Journal of Computational Physics, 2023, 475: 1-20.
[20] CHEN Xi, OKADA T, KAWAMURA Y, et al. Estimation of directional wave spectra and hull structural responses based on measured hull data on 14 000 TEU large container ships[J]. Marine Structures, 2021, 80: 1-26.
[21] FEENY B F, KAPPAGANTU R. On the physical interpretation of Proper Orthogonal Modes in vibrations[J]. Journal of Sound and Vibration, 1999, 219(1): 189-192.
[22] PHALIPPOU P, BOUABDALLAH S, BREITKOPF P, et al. ‘On-the-fly’ snapshots selection for Proper Orthogonal Decomposition with application to nonlinear dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 1-17.
[23] 梅冠华, 康灿, 张家忠. 二维壁板颤振的本征正交分解降阶模型研究[J]. 振动与冲击, 2017, 36(23): 144-151.
MEI G H, KANG C, ZHANG J Z. Reduced order model based on proper orthogonal decomposition for two- dimensional panel flutter[J]. Journal of Vibration and Shock, 2017, 36(23): 144-151.
[24] 陈兵, 龚春林, 仇理宽, 等. 基于频域本征正交分解的几何非线性动力学降阶[J]. 振动与冲击, 2020, 39(21): 163-172.
CHEN B, GONG C L, QIU L K, et al. Order reduction of geometrically nonlinear dynamic system based on POD in frequency domain[J]. Journal of Vibration and Shock, 2020, 39(21): 163-172.
[25] 肖龙辉, 裴志勇, 徐文君, 等. 船体结构数字孪生技术及应用[J]. 船舶力学, 2023, 27(4): 573-582.
XIAO L H, PEI Z Y, XU W J, et al. Digital twin technology and its application in ship structural field[J]. Journal of Ship Mechanics, 2023, 27(4): 573-582.
[26] MUHAMMAD T A C. Sensitivity of modal parameters of multi-span bridges to SSI and pier column inelasticity and its implications for FEM model updating[J]. Latin American Journal of Solids and Structures, 2020, 17(2): 1-34.
[27] LI Y W, KUO T, PENG H, et al. Finite element model updating for repeated eigenvalue structures via the reduced-order model using incomplete measured modes[J]. Mechanical Systems and Signal Processing, 2020, 142(1): 1-16.
[28] 王立忠. 复杂梁式结构模型降阶及降阶模型修正[D]. 大连: 大连理工大学, 2014.
[29] OLESEN P J, HODŽIĆ A, ANDERSEN S J, et al. Dissipation-optimized proper orthogonal decomposition[J]. Physics of Fluids, 2023, 35(1): 1-15.
[30] CAPONERO M A. Use of FBG sensors in advanced civil engineering applications[J]. Journal of Instrumentation, 2023, 18(7): 1-11.
[31] 全学友, 刘佳迪, 任佶, 等. 分解等截面直梁弯曲变形和剪切变形的试验方法[J]. 浙江大学学报(工学版), 2021, 55(6): 1100-1107.
QUAN X Y, LIU J D, REN J, et al. Experimental approach for decomposition of deflection of prismatic beams into flexural and shear deformations[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(6): 1100-1107.
[32] NEREA P J, VICENTE N V. Review of the application of artificial neural networks in ocean engineering[J]. Ocean Engineering, 2022, 259(1): 1-13.