针对船舶主体曲面过于复杂、难以精细表达轮廓与外形的问题,研究NURBS曲面的船舶主体三维造型建模方法。对船舶主体的曲面型值点进行坐标转换处理,将船舶主体的二维平面坐标映射至三维坐标系。利用转换后的曲面型值点,创建船舶主体基准面,生成船舶主体型线。利用船舶主体造型控制点与对应的权因子,确定船舶主体的NURBS曲面。利用船舶主体NURBS曲面控制点,构成3次B样条曲线。通过NURBS曲线反求方法,使曲线分段连接点与B样条曲线定义域内的节点对应,完成船舶主体三维造型模型的构建。实验结果表明,该方法能够有效建立船舶主体三维造型模型,满足船舶设计与性能分析的需求。
To address the issue of the complexity of ship body surfaces, which makes it difficult to accurately express contours and shapes, a three-dimensional modeling method for ship bodies using NURBS surfaces is studied. Perform coordinate transformation on the surface shape points of the ship's main body, mapping the two-dimensional plane coordinates of the ship's main body to a three-dimensional coordinate system. Using the converted surface shape value points, create the ship's main reference surface and generate the ship's main body profile. Determine the NURBS surface of the ship's main body using the control points of the ship's main body shape and corresponding weight factors. Construct a cubic B-spline curve using NURBS surface control points of the ship's main body. By using the NURBS curve inverse method, the segmented connection points of the curve correspond to the nodes within the B-spline curve domain, completing the construction of the three-dimensional modeling model of the ship body. The experimental results show that this method can effectively establish a three-dimensional modeling model of the ship body, meeting the needs of ship design and performance analysis.
2024,46(23): 33-36 收稿日期:2024-1-6
DOI:10.3404/j.issn.1672-7649.2024.23.005
分类号:U662
作者简介:宁晓蕾(1984-),女,硕士,讲师,研究方向为视觉传达
参考文献:
[1] 肖建华, 马成, 朱兆宇, 等. 基于方形压头的双曲率船体外板分段成形设计[J]. 武汉理工大学学报, 2023, 45(9): 110-117.
XIAO J H, MA C, ZHU Z Y, et al. Research on sectional forming design of double curvature hull plate based on square indenters[J]. Journal of Wuhan University of Technology, 2023, 45(9): 110-117.
[2] 王洪波, 王超宇, 刘一飞, 等. 耐腐蚀性铝合金复杂型面的多点成形研究[J]. 轻合金加工技术, 2022, 50(10): 59-63.
WANG H B, WANG C Y, L Y F, et al. Research on multi-point forming of corrosion resistant aluminum alloy complex profile[J]. Light Alloy Fabrication Technology, 2022, 50(10): 59-63.
[3] SERVAN B, DI C D, GARCIA J, et al. Fully 3d ship hydro elasticity: monolithic versus partitioned strategies for tight coupling[J]. Marine Structures, 2021, 80(19): 22-29.
[4] 太志伟, 张兴龙, 尹晓龙, 等. 三维船舶模型边界表示转构造表示方法[J]. 计算机辅助设计与图形学学报, 2024, 35(12): 1851-1862.
TAI Z W, ZHANG X L, YIN X L, et al. A method for transforming B-Rep of 3D ship models into CSG[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 35(12): 1851-1862.
[5] 杨晓, 任鸿翔, 廉静静, 等. VR交互式三维虚拟船舶建模与仿真[J]. 中国航海, 2022, 45(1): 37-42, 49.
YANG X, REN H X, LIAN J J, et al. 3D virtual ship construction and simulation through VR interactive technology[J]. Navigation of China, 2022, 45(1): 37-42, 49.
[6] 何丽丝, 曹荣, 王德禹. 面向送审的船体结构三维模型转化数据技术研究[J]. 中国舰船研究, 2021, 16(5): 206-215.
HE L S, CAO R, WANG D Y. Data transformation technology of 3D ship structure model for approval[J]. Chinese Journal of Ship Research, 2021, 16(5): 206-215.