为解决运动体主动改向进行避碰的问题,提出带有速度势场的无人自主船舶避碰动态路径规划方法。针对船舶的MMG模型,进行螺旋桨的增益和控制舵增益假设。引入人工势场算法,将无人船与障碍物和无人船与目标点间的相对速度融入到势场中,构建距离-速度势场模型。结合动、静态障碍物共存的复杂多变水域条件,对无人自主船舶避碰动态路径规划进行实验。由实验结果可知,该模型解决以距离为要素构建的人工势场法不能使运动体主动改向进行避碰的问题,且无人自主船舶能以主动改变航向的方式快速地避离障碍物。
A dynamic path planning method for unmanned autonomous ship collision avoidance with velocity potential field is proposed, which solves the problem that the artificial potential field method constructed with distance as an element cannot make the moving body actively redirect to avoid collision. In the artificial potential field, the relative speed between the unmanned ship and the obstacle, and the relative speed between the unmanned ship and the target point are integrated into the potential field, and the distance-speed potential field model is constructed. The method is applied to the dynamic path planning experiment of unmanned autonomous ship collision avoidance in complex and changeable waters where dynamic and static obstacles coexist. The results show that unmanned autonomous ships can quickly avoid obstacles by actively altering her course, and the algorithm conforms to the actual collision avoidance engineering.
2024,46(23): 37-41 收稿日期:2024-3-10
DOI:10.3404/j.issn.1672-7649.2024.23.006
分类号:U675.79;TP29
作者简介:孙建明(1988-),男,讲师,研究方向为船舶避碰
参考文献:
[1] 张旋武, 谢磊, 初秀民, 等. 无人船路径跟随控制方法综述[J]. 交通信息与安全, 2020, 38(1): 20-26.
[2] HONGGUANG L, YONG Yin. Fast path planning for autonomous ships in restricted waters[J]. Applied. Science. 2018, 8, 2592.
[3] 张树凯, 刘正江, 蔡垚, 等. 无人船艇航线自动生成研究现状及展望[J]. 中国航海, 2019, 42(3): 6-11.
[4] AGNIESZKA L. Ship’s trajectory planning for collision avoidance at sea based on ant colony optimisation[J]. The Journal of Navigation, 2015, 68: 291-307.
[5] 倪生科, 刘正江, 蔡垚, 等. 基于混合遗传算法的船舶避碰路径规划[J]. 上海海事大学学报, 2019, 40(1): 21-26.
[6] ZHANG Y Q, SHI G Y, LIU H, et al. Decision supporting for ship collision avoidance in restricted waters[J]. International Journal of Simulation and Process Modelling, 2020, 15(1-2): 40-51.
[7] 陈天元, 袁伟, 俞孟蕻. 基于集合制导和动态窗口约束的无人船自主动态避碰方法研究[J]. 中国造船, 2020, 61(3): 176-185.
[8] DENG F, JIN L L, HOU X H , et al. COLREGs: compliant dynamic obstacle avoidance of usvs based on thedynamic navigation ship domain[J]. Journal of Marine Science and Engineering, 2021(9): 837.
[9] 周维, 过学迅, 裴晓飞, 等. 基于RRT与MPC的智能车辆路径规划与跟踪控制研究[J]. 汽车工程, 2020, 42(9): 1151-1158.
[10] XU H T, MIGUEL A H, SOARES C G. Modified vector field path-following control system for an underactuated autonomous surface ship model in the presence of static obstacles[J]. Journal of Marine Science and Engineering., 2021(9): 652.
[11] SONG L, SU Y, DONG Z, et al. A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles[J]. Ocean Engineering, 2018, 170: 351-360.
[12] 孙耀东. —种船舶航行路径的智能规划研究[D]. 大连: 大连海事大学, 2018.
[13] WANG R , MIAO K, SUN J, et al. Intelligent control algorithm for USV with input saturation based on RBF network compensation[J]. Int. J. Reason. -Based Intell. Syst., 2019, (11): 235-241.
[14] SHEN Z P, JIANG Z H, WANG G F, et al. Fuzzy adaptive iterative sliding mode control of sail-assisted ship motion[J]. Journal of Harbin Engineering University, 2016, 37(5): 634-639.
[15] KHATIB O. Real-time obstacle avoidance for manipula-tors and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
[16] 郭凯红, 李博昊, 宗晓瑞. 基于改进人工势场的避障路径规划策略研究[J]. 舰船科学技术, 2021, 43(7): 54-57.
[17] 翟红生, 王佳欣. 基于人工势场的机器人动态路径规划新方法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(6): 814-818.
[18] WANG N. A novel analytical framework for dynamic quaternion ship domains[J]. Journal Navigation., 2013, 66: 265-281.