为了准确预测大型船舶在浅水狭窄区域航行规律,应用CFD计算方法,基于STAR-CCM+软件,通过求解RANS方程,明确仿真要素,构建仿真模型,对航行船舶建立水动力模型进行数值模拟,得出不同航道宽度和水深下船舶阻力和下沉量随航速的变化情况,为验证数值模拟的准确性,将软件模拟计算结果与船模试验结果进行对比。研究结果表明,模拟船舶阻力与下沉量计算结果与船模试验数据吻合良好,误差控制在7%以内,在STAR-CCM+平台上模拟计算方法可以快速和准确地预测船舶水动力性能及航行规律,为后续通航隧道的设计提供理论支持和参考;保证STAR-CCM+模拟算例精确度的前提下,试验得出不同航速下不同航道水深和航道宽度对船舶航行的影响,提出船舶通过该水域安全航速范围。
In order to accurately predict the navigation law of large ships in shallow water and narrow areas, CFD calculation method and STAR-CCM+ software are applied to solve RANS equation, identify simulation elements, build simulation models, and establish hydrodynamic models for sailing ships for numerical simulation. The changes of ship resistance and subsidence with speed under different channel widths and water depths are obtained. In order to verify the accuracy of the numerical simulation, the software simulation calculation results were compared with the ship model test results, and the research results showed that: The calculation results of the simulated ship resistance and subsidence are in good agreement with the ship model test data, and the error is controlled within 7%. The simulation calculation method on the STAR-CCM+ platform can quickly and accurately predict the ship's hydrodynamic performance and navigation law, and provide theoretical support and reference for the subsequent design of navigable tunnels. Under the premise of ensuring the accuracy of STAR-CCM+ simulation examples, the influence of different channel water depth and channel width on ship navigation under different speed is obtained, and the safe speed range of ships passing through the water area is proposed.
2024,46(23): 42-48 收稿日期:2024-1-31
DOI:10.3404/j.issn.1672-7649.2024.23.007
分类号:U676.3
作者简介:徐浩然(1999-),男,硕士研究生,研究方向为船舶CFD计算
参考文献:
[1] 杨明远, 余丹亚, 覃益官. 湘粤运河大构想[J]. 中国水运, 2020, 4(1): 55-57.
YANG M Y, YU DY, QIN Y G. The grand idea of a canal between Hunan and Guangdong[J]. Journal of Chinese Water Transport, 2020, 4(1): 55-57.
[2] 高嵩, 焦芳芳. 赣粤运河建设的必要性和可行性[J]. 中国水运, 2020, 4(3): 27-29.
GAO S, JIAO F F. The necessity and feasibility of canal construction between Jiangxi and Guangdong[J]. Journal of Chinese Water Transport, 2020, 4(3): 27-29.
[3] 程细得, 冯百威, 常海超, 等. 基于CFD的船舶阻力性能多目标优化[J]. 海洋科学与技术, 2019, 24(1): 152-165.
CHENG X D, FENG B W, CHANG H C, et al. Multi-objective optimisation of ship resistance performance based on CFD[J]. Journal of Marine Science and Technology, 2019, 24(1): 152-165.
[4] 余广年, 赵家强. 高坝通航结构物通航隧道水力特性及船舶通航试验研究[J]. 英国皇家物理学会: 地球与环境科学, 2021, 768(1): 012041 .
YU G N , ZHAO J Q. Research on hydraulic characteristics of navigable tunnels of high-dam navigable structures and ship navigation test[J]. IOP Conference Series: Earth and Environmental Science, 2021, 768(1): 012041 .
[5] 李焱, 郑宝友, 周华兴. 构皮滩升船机中间渠道通航隧洞和渡槽的尺度研究[J]. 水道港口, 2012, 33(1): 45-51.
LI Y, ZHENG B Y, ZHOU H X. Scale study of navigable tunnel and aqueduct in middle channel of Guopitan ship lift[J]. Waterway Port, 2012, 33(1): 45-51.
[6] 汤建宏, 阚得静. 高坝通航建筑物通航隧洞断面经济性分析[J]. 水运工程, 2017(7): 142-146.
TANG J H, KAN D J. Economic analysis of section of navigable tunnel of high dam navigable building[J]. Water Transport Engineering, 2017(7): 142-146.
[7] 郭洪雨. 通航隧道设计与施工关键技术研究[D]. 杭州: 浙江大学, 2014.
[8] 肖应彪. 乌江通航隧洞尺度与通行船舶参数关联性试验研究[D]. 武汉: 武汉理工大学, 2020.
[9] 陈雪华. 乌江通航隧洞与千吨级船舶关联性数值模拟研究[D]. 武汉: 武汉理工大学, 2021.
[10] 李果. 长江人工水道与万吨级船舶相关性试验研究[D]. 武汉: 武汉理工大学, 2019.
[11] 岳鹏飞. 长江人工水道万吨级船舶操纵安全技术要求研究[D]. 武汉: 武汉理工大学, 2019.
[12] 黄丽, 张瑞. 基于CFD的船舶阻力数值模拟[J]. 广船科技, 2018, 38(4): 15-18.
HUANG L, ZHANG R. Numerical simulation of ship resistance based on CFD[J]. Guangdong Marine Science and technology Journal, 2018, 38(4): 15-18.