海洋拖曳系统是一种经典的流固耦合系统。然而,拖曳系统通常是根据实验数据确定的恒定阻力系数进行动态模拟。为了改进这种选取固定的经验阻力系数模拟方法,本文将莫里森方程应用于节点位置有限元,将改进的节点位置有限元法(NPFEM)与雷诺数平均N-S(RANS)方法相结合,用于预测雷诺数范围内沿缆索的水动力,通过计算获得的水动力,对NPFEM进行流体动力学插值。结果表明,该方法得到的模拟结果与实验的结果更加吻合,更好地模拟拖缆的真实运动情况。该FSI方法揭示了拖曳系统周围真实的强流体动力学确定的缆索动力学和涡流结构引起的振动。
Ocean towing system is a classic fluid-structure coupling system. However, towing systems are typically dynamically simulated based on constant drag coefficients determined from experimental data. To improve the method of selecting a fixed empirical drag coefficient for simulation, this paper applies the Morrison equation to the nodal position finite element method. The improved nodal position finite element method (NPFEM) is combined with the Reynolds number averaged N-S (RANS) method to predict the hydrodynamic forces along the cable within the Reynolds number range. By calculating the obtained hydrodynamic forces, the NPFEM is interpolated for fluid dynamics. The results indicate that the simulation results obtained by this method are more consistent with the experimental results, and better simulate the real motion of the towing cable. This FSI method reveals the vibration caused by the cable dynamics and vortex structures determined by the real strong fluid dynamics around the towing system.
2024,46(23): 57-63 收稿日期:2024-3-4
DOI:10.3404/j.issn.1672-7649.2024.23.009
分类号:P756.1
基金项目:国家自然科学基金项目(51709133)
作者简介:黄帅瑜(2000-),男,硕士研究生,研究方向为拖曳系统流固耦合
参考文献:
[1] KUNDU P K, COHEN I M, DAVID R. Fluid mechanics (Fifth Edition) [M]. Academic Press, 2012.
[2] DU X, CUI H, ZHANG Z. A numerical method for analyzing the influence of underwater vehicle flow field on dynamic behavior of towed sonar cable array[J]. Ocean Engineering, 2019, 175(MAR.1): 163-175.
[3] YANG X, WU J, XU S. Dynamic analysis of underwater towed system under undulating motion mode of towed vehicle[J]. Applied Ocean Research, 2022, 121: 103083.
[4] 王飞, 黄国樑, 邓德衡. 水下拖曳系统的稳态运动分析与设计[J]. 上海交通大学学报, 2008, 4: 679-684.
WANG F, HUANG G L, DENG D H. Steady state motion analysis and design of underwater towing systems[J]. Journal of Shanghai JiaoTong University, 2008, 4: 679-684.
[5] GUAN G, ZHANG X, WANG Y, et al. Analytical and numerical study on underwater towing cable dynamics under different flow velocities based on experimental corrections[J]. Applied Ocean Research, 2021, 114: 102768.
[6] 章浩燕, 朱克强, 张洋, 等. 水下拖曳缆索二维几何形态的研究[J]. 舰船科学技术, 2013, 35(4): 35-39.
ZHANG H Y, ZHU K Q, ZHANG Y, et al. A study on the two-dimensional geometric shape of underwater towing cables[J]. Ship Science and Technology, 2013, 35(4): 35-39.
[7] ZHAO Y, LI G, LIAN L. Numerical model of towed cable body system validation from sea trial experimental data[J]. Ocean Engineering, 2021, 226(6): 108859.
[8] 李光明, 杨飞, 朱学康. 水下拖缆稳态运动特性计算方法及应用分析[J]. 舰船科学技术, 2011, 33(8): 3-5.
LI G M, YANG F, ZHU X K. Calculation method and application analysis of steady-state motion characteristics of underwater towing cables[J]. Ship Science and Technology, 2011, 33(8): 3-5.
[9] WU J, YANG X, XU S, et al. Numerical investigation on underwater towed system dynamics using a novel hydrodynamic model[J]. Ocean engineering, 2022(3): 247-248.
[10] GROSENBAUGH M A. Dynamic behavior of towed cable systems during ship turning maneuvers[J]. Ocean Engineering, 2007, 34(11-12): 1532-1542.
[11] WANG Z, GANG S. Parameters influence on maneuvered towed cable system dynamics[J]. Applied Ocean Research, 2015, 49: 27-41.
[12] KISHORE S S, GANAPATHY C. Analytical investigations on loop-manoeuvre of underwater towed cable-array system[J]. Ocean Engineering, 1998, 25(6): 353-360.
[13] GAO H, WANG Z. Dynamic behavior of part towing cable system during turning[J]. Shanghai Jiaotong University, 2018, 23: 444-455.
[14] ZHU Z H. Dynamic modeling of cable system using a new nodal position finite element method[J]. Communications in Numerical Methods in Engineering, 2010, 26(6): 692-704.
[15] SUN F J, ZHU Z H, LAROSA M. Dynamic modeling of cable towed body using nodal position finite element method[J]. Ocean Engineering, 2011, 38(4): 529-540.
[16] IMSL. Users manual, math/library, FORTRAN numerical library user’s guide math library7.0[M]. 2016.
[17] GEUZAINE C, REMACLE F J. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331.