船舶电子器件的散热问题近年备受关注,微通道沸腾换热是一种高效冷却方式。本文针对烧结并联微通道,以去离子水为工质,研究了底厚粒径比效应对沸腾换热性能的影响。微通道采用30 μm和90 μm粒径2种树枝型铜粉烧结而成,其烧结底层厚度从100~1000 μm变化。研究发现:对于每种粒径,存在较优的底厚范围,较优的底厚可大大抑制压力和温度脉动,沸腾换热效果达到最佳,这意味着烧结微通道存在最佳底厚粒径比范围。粒径效应也会发挥独立的作用,90 μm系列样品较30 μm系列性能更佳。压力脉动和可视化观察表明:过大或过小底厚样品常出现大面积干涸和很大的温度和压力波动,易造成爆炸沸腾和供液的严重不畅,而较优的底厚可大大抑制压力和温度脉动,沸腾换热效果达到最佳。烧结微通道最佳的底厚粒径比范围为3.0~7.0。
The problem of heat dissipation in electronics apparatus of marine has been of great concern. The subcooled flow boiling experiment was conducted to study the effect of layer thickness on boiling heat transfer performance. The parallel microchannels were sintered with two kinds of dendritic-like copper powders with diameters of 30 μm and 90 μm, which the layer thickenss varies from 100 μm to 1000 μm. It is found that there exists an optimal layer thickness for each particle size, which can greatly suppress pressure and temperature pulsation, and achieve the best boiling heat transfer effect, which means that there exists an optimal layer -thickness-to-particle-size ratio range for sintering microchannels. The particle size effect also plays an independent role, and the 90 μm series show better performance than the 30μm series. Samples with too large or too small layer thickness often leads to explosive boiling and serious obstruction of liquid supply. The optimum layer thickness can greatly inhibit pressure and temperature pulsation and achieve the best boiling heat transfer effect. The optimum optimal layer-thickness-to-particle-size ratio range between 3.0~7.0.
2024,46(23): 64-71 收稿日期:2023-12-12
DOI:10.3404/j.issn.1672-7649.2024.23.010
分类号:TK124
基金项目:国家自然科学基金面上项目(51576091)
作者简介:冯磊(1993-),男,硕士研究生,研究方向为烧结微通道相变换热
参考文献:
[1] CLARK D, WEIBEL A, GARIMELLA V. Impact of pressure drop oscillations and parallel channel instabilities on microchannel flow boiling and critical heat flux[J]. Journal of Multiphase Flow, 2023, 163: 80-90.
[2] MRINAL J, POH L. Study of transient heat transfer and synchronized flow visualizations during sub-cooled flow boiling in a small aspect ratio microchannel[J]. International Journal of Multiphase Flow, 2016, 83: 254-266.
[3] SAJJAD B, SAEED M. Microscale study of mechanisms of heat transfer during flow boiling in a microchannel[J]. International Journal of Heat and Mass Transfer, 2015, 88: 111-121.
[4] ZHANG Shiwei, SUN Yalong, WEI Yuan, et al. Effects of heat flux, mass flux and channel width on flow boiling performance of porous interconnected microchannel nets[J]. Experimental Thermal and Fluid Science, 2018, 90: 310-318.
[5] CHENG X, WU J J. Unravelling the role of inlet valve in flow boiling characteristics in microchannel: Flow reversal suppression[J]. International Journal of Heat and Mass Transfer, 2022, 139: 1-7.
[6] AYYAZ S, ARIVAZHAGAN G, AMIT A , et al. Study of Bubble Growth and Microchannel Flow Boiling Heat Transfer Characteristics Using Dynamic Contact Angle Model[J]. Thermal Science and Engineering Progress, 2020, 20: 17-43.
[7] LOMBAARD L, MOGHIMI M, VALLURI P, et al. Interaction between multiple bubbles in microchannel flow boiling and the effects on heat transfer[J]. International Communications in Heat and Mass Transfer, 2021, 129: 703-720.
[8] RIBATSKI G, THOME J R. Nucleate boiling heat transfer of R134a on enhanced tubes[J]. Applied Thermal Engineering, 2006, 26: 1018-1031.
[9] CHANG J Y, YOU S M. Heater orientation effects on pool boiling of micro-porous enhanced surface in saturated FC-72[J]. Journal of ASME Heat Transfer, 1996, 118: 937-943.
[10] JUN S. Pool boiling heat transfer enhancement of water using brazed copper microporous coatings[J]. Journal of Heat Transfer, 2016, 138: 502-503.
[11] YANG Y, LIU F. Effect of coating layer thickness for boiling heat transfer on micro porous coated surface in confined and unconfined spaces[J]. Experimental Thermal and Fluid Science, 2013, 47: 40-47.
[12] MELANIE T, REZA A, MATTEO B. Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers[J]. Applied Physics Letters, 2016, 108: 243102.
[13] MANETTI L, MOITA H, DE S, et al. Effect of copper foam thickness on pool boiling heat transfer of HFE-7100[J]. Int. J. Heat Intemational Journal of Heat and Mass Trarsfer, 2020, 152: 547-556.
[14] LIU, F. A study of sintered copper porous surfaces for pool boiling enhancement[J]. Theses, 2016: 12-14.
[15] LIANG Q, VALIZADEH K, BATENI A , et al. The effect of type and size of nanoparticles and porosity on the pool boiling heat transfer of water/Fe nanofluid: Molecular dynamics approach[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136(3): 409-418.
[16] ZHANG K, BAI L, JIN H, et al. A comparative study of pool boiling heat transfer in different porous artery structures[J]. Applied Thermal Engineering, 2022, 202(4): 59-70.
[17] CHEN L, TIAN S, KARAYIANNIS G. The effect of tube diametier on vertical two-phase flow regimes in small tubes[J]. International Journal of Heat & Mass Transfer. 2006, 49(21–22): 4220-4230.
[18] NGUYEN L, KIM M, CHOI B, et al. Optimum coating thickness for the fastest chilldown of Teflon-coated stainless steel flat plate in liquid nitrogen pool[J]. International Journal of Heat and Mass Transfer2022, 194(1): 1-12.