针对自主水下潜航器(AUV)在近距离水下回收过程中对接姿态稳定控制的需求,在建立AUV空间运动数学模型的基础上,设计一款姿态跟踪的自抗扰控制器(ADRC),并对干扰补偿通道进行平滑低通滤波优化。通过对系统总扰动进行实时估计和补偿,实现对姿态误差的控制调整。以常值、阶跃扰动、高频正弦扰动3种波形作为预设姿态值,在Matlab/Simulink中进行仿真对比实验。结果表明,相较于传统PID控制器,该控制系统具有较快的响应速度,同时能够有效抑制外界扰动,可用于AUV回收姿态控制。
To meet the demand of docking attitude stabilization control of an autonomous underwater vehicle (AUV) during near-field underwater recovery, based on the mathematical model of AUV spatial motion, an active disturbance rejection controller (ADRC) for attitude tracking is designed and optimized with smooth low-pass filtering for its interference compensation channel. The control adjustment of the attitude error is realized by real-time estimation and compensation of the total system disturbance. Three waveforms of constant value, step disturbance, and high frequency sinusoidal disturbance are used as preset attitude values for simulation and comparison experiments in Matlab/Simulink. The results show that compared with the traditional PID controller, the control system has a faster response speed, and at the same time, it can effectively suppress the external disturbance and be used for attitude control during AUV recovery.
2024,46(23): 93-97 收稿日期:2024-2-24
DOI:10.3404/j.issn.1672-7649.2024.23.015
分类号:TP13
基金项目:山西省科技创新团队专项资助项目(202304051001030)
作者简介:王秋生(1997-),男,硕士研究生,研究方向为水下无人潜航器自主运动控制
参考文献:
[1] JOE H, CHO H, SUNG M, et al. Sensor fusion of two sonar devices for underwater 3D mapping with an AUV[J]. Autonomous Robots, 2021, 45(4): 543-560.
[2] MAHMOUDZADEH S, YAZDANI A. Distributed task allocation and mission planning of AUVs for persistent underwater ecological monitoring and preservation[J]. Ocean Engineering, 2023, 290: 116216.
[3] 曹少华, 张春晓, 王广洲, 等. 智能水下机器人的发展现状及在军事上的应用[J]. 船舶工程, 2019, 41(2): 79-84,89.
CAO S H, ZHANG C X, WANG G Z, et al. Development situation and military application of autonomous underwater vehicle[J]. Ship Engineering, 2019, 41(2): 79-84,89.
[4] ZEREIK E, BIBULI M, MIŠKOVIĆ N, et al. Challenges and future trends in marine robotics[J]. Annual Reviews in Control, 2018, 46: 350-368.
[5] PALOMERAS N, VALLICROSA G, MALLIOS A, et al. AUV homing and docking for remote operations[J]. Ocean Engineering, 2018, 154: 106-120.
[6] 袁学庆, 刁家宇, 李卫民, 等. AUV水下对接的发展与应用现状[J]. 舰船科学技术, 2023, 45(5): 1-8.
YUAN X, DIAO J Y, LI W M, et al. Development and application status of AUV underwater docking[J]. Ship Science and Technology, 2023, 45(5): 1-8.
[7] VALLICROSA G, BOSCH J, PALOMERAS N, et al. Autonomous homing and docking for AUVs using Range-Only Localization and Light Beacons[J]. IFAC-Papers OnLine, 2016, 49(23): 54-60.
[8] 王永鼎, 王鹏, 孙鹏飞. 自主式水下机器人控制技术研究综述[J]. 世界科技研究与发展, 2021, 43(6): 636-648.
WANG Y D, WANG P, SUN P F. Review on research of control technology of autonomous underwater vehicle[J]. World Sci-tech R& D, 2021, 43(6): 636-648.
[9] 王芳, 万磊, 李晔, 等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227-241.
WANG F, WAN L, LI Y, et al. A survey on development of motion control for underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227-241.
[10] KIM M-J, BAEK W-K, HA K-N, et al. Implementation of hovering auv and its attitude control using PID controller[J]. Journal of Ocean Engineering and Technology, 2016, 30(3): 221-226.
[11] 吕厚权, 郑荣, 杨斌, 等. 水下自主机器人航向控制算法应用研究[J]. 舰船科学技术, 2020, 42(3): 108-114.
LV H Q, ZHENG R, YANG B, et al. Application research of heading control algorithm for AUV[J]. Ship Science and Technology, 2020, 42(3): 108-114.
[12] 饶志荣, 董绍江, 王军, 等. 基于干扰观测器的AUV深度自适应终端滑模控制[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 103-110.
RAO Z R, DONG S J, WANG J, et al. Adaptive terminal sliding mode control of autonomous underwater vehicle (AUV) depth based on a disturbance observer[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2021, 48(1): 103-110.
[13] 楼鉴路, 李文魁, 周铸, 等. 基于线性自抗扰控制的AUV深度控制研究[J]. 舰船科学技术, 2023, 45(6): 96-101.
LOU J L, LI W K, ZHOU Z, et al. Research on AUV depth control based on linear active disturbance rejection control[J]. Ship Science and Technology, 2023, 45(6): 96-101.
[14] FAREH R, KHADRAOUI S, ABDALLAH M Y, et al. Active disturbance rejection control for robotic systems: A review[J]. Mechatronics, 2021, 80: 102671.
[15] 曾俊宝, 李硕, 刘鑫宇, 等. 便携式自主水下机器人动力学建模方法研究[J]. 计算机应用研究, 2018, 35(6): 1747-1750.
ZENG J B, LI S, LIU X Y, et al. Research on dynamic modeling of portable autonomous underwater vehicle[J]. Application Research of Computers, 2018, 35(6): 1747-1750.