为了满足水下船体检测的工作需求,对目前水下船体检测方法进行研究,设计一种用于水下船体检测的仿生扑翼机器人。首先基于仿生学的原理,对机器人整体结构进行设计,通过机身和肢体结构的相互配合设计,提高机器人在水下环境中的稳定性和灵活性;其次,通过FLOW Simulation软件对机器人的仿生扑翼机构进行了扑翼运动过程的模拟实验,验证了设计的合理性和可行性。结果表明,该仿生扑翼机器人具备良好的姿态调整能力与优越的稳定性能,满足水下船体检测的需求。
To achieve the working demand of underwater hull inspection, a bionic flapping robot was designed for underwater hull inspection. In this paper, the overall structure of the robot is firstly designed based on the principle of bionics. The stability and flexibility of the robot in the underwater environment are improved through the mutual coordination design of the body and limb structure. Secondly, the simulation experiment of the fluttering motion process of the bionic fluttering mechanism of the robot was carried out by FLOW Simulation software to verify the rationality and feasibility of the design. The results show that the bionic flapping wing robot has good attitude adjustment ability and superior stability performance, and it can be used for the underwater hull inspection.
2024,46(23): 111-115 收稿日期:2024-3-1
DOI:10.3404/j.issn.1672-7649.2024.23.018
分类号:U672
基金项目:江苏省第六期“333高层次人才培养工程”(第三层次);山东省自然科学基金面上项目(ZR2020ME145);江苏海事科技创新基金项目(2022KJCX05)
作者简介:沈雁(1981-),女,博士,副教授,研究方向为海洋工程
参考文献:
[1] 李广志, 王建慧, 章合盛. 辅助水利工程检查的水下机器人系统分析[J]. 北京水务, 2023(1): 71-75.
[2] 朱万浩, 章盼梅, 孔令棚, 等. 水下仿生机器人设计与实现[J]. 机床与液压, 2022, 50(9): 71-74.
[3] SAKAGAMI N, SUKA M, KIMURA Y, et al. Haptic shared control applied for ROV operation support in flowing water[J]. Artificial Life and Robotics, 2022, 27(4): 867-875.
[4] 夏洪永. 海底电缆巡检水下机器人的模块化控制系统[J]. 舰船科学技术, 2018, 40(4): 202-204.
XIA H Y. Modular control system of underwater vehicle for submarine cable inspection[J]. Ship Science and Technology, 2018, 40(4): 202-204.
[5] 陈饰勇, 刘晓初, 王立涛, 等. 水下机器人多传感器组合系统在船体检测的应用[J]. 机床与液压, 2019, 47(23): 61-63.
[6] 李晨, 闫军, 任福华. 基于 ARM 与单目立体的自主水下机器人导向结构优化[J]. 舰船科学技术, 2020, 42(4): 67-69.
LI C, YAN J, REN F H. Optimization of steering structure of autonomous underwater robot based on ARM and monocular stereo[J]. Ship Science and Technology, 2020, 42(4): 67-69.
[7] 宋志峰. 基于机器人的舰船智能导航系统设计[J]. 舰船科学技术, 2019, 41(10) : 115-117.
SONG Z F. Design of intelligent navigation system for ships based on robot[J]. Ship Science and Technology, 2019, 41(10): 115-117.
[8] BAINES R, PATIBALLA S K, BOOTH J, et al. Multi-environment Robotic Transitions through Adaptive Morphogenesis[J]. Nature, 2022, 610(79): 283-289.
[9] MA X, WANG G, LIU K. Design and optimization of a multimode amphibious robot with propellerleg[J]. IEEE Transactions on Robotics, 2022, 38(6): 3807-3820.
[10] 闫勋, 廖宇辰, 贾晋军, 等. 面向海洋勘测的多水下机器人编队跟踪控制研究[J]. 舰船科学技术, 2024, 46(1): 102-108.
YAN X, LIAO Y C, JIA J J, et al. Research on formation-tracking control of Multi-AUV systems for ocean survey[J]. Ship Science and Technology. 2024, 46(1): 102-108.
[11] HENRIQUE G F , OLIVIER C , MOHAMED B , et al. Advances in reconfigurable vectorial thrusters for adaptive underwater robots[J]. Journal of Marine Science and Engineering, 2021, 9(2).