动平台下在对多普勒敏感信号回波进行速度搜索匹配滤波处理时,相对速度和舷角的耦合关系会造成混响多普勒扩展,导致难以利用速度信息检测低速目标。为在强混响背景中检测低速运动目标,本文在常规波束形成、自身多普勒补偿和速度搜索匹配滤波的基础上提出一种新方法,将分裂波束形成和速度匹配相结合,通过对各速度通道的左右半波束进行后置相位差判断来抑制非关心方位的回波,达到抑制亮点速度和舷角耦合的效果。通过推导不同信噪比下分裂阵相位差的概率密度分布,给出了相位差区间的选择方法。经海试数据验证表明,该方法与常规方法相比可使多普勒展宽减少50%,更有利于从强混响中辨识低速弱目标。基阵孔径越小,平台速度越大,该方法相比常规方法的优势越明显。
When matched-filter processing with velocity channels is applied to Doppler-sensitive pulse echoes on a moving platform, the coupling relationship between velocity and relative bearing leads to reverberation Doppler spread, making it difficult to detect low-speed targets using velocity information. Based on conventional beamforming, matched-filter processing and own Doppler nullification, a new method that combines split beamforming and velocity matching is presented. The post judgment on phase difference between left and right half-beams in all velocity channels is introduced to suppress echoes from unexpected bearing, reducing the coupling between velocity and relative bearing. A method for selecting the phase difference interval is provided by deducing the probability density distribution of phase difference between split beams under different signal-to-noise ratios. It is verified by sea trial data that Doppler spread obtained by the new approach is reduced by 50% compared with the conventional method and low- speed weak targets are easier to be identified from strong reverberation. The advantage of this method is greater than that of the conventional method when array aperture is smaller and speed of sonar platform is slower.
2024,46(23): 116-121 收稿日期:2024-2-4
DOI:10.3404/j.issn.1672-7649.2024.23.019
分类号:U665;TB566
基金项目:国家自然科学基金资助项目(41976177)
作者简介:王晓彤(1991-),女,博士,工程师,研究方向为水声信号处理与水声对抗
参考文献:
[1] 贾耀君, 蔡志明, 王平波. 基于双曲调频的组合波形设计研究[J]. 电子与信息学报, 2023, 45(12): 4352-4360.
[2] PAKDEL A O, AMIRI H, RAZZAZI F. Enhanced target detection using a new combined sonar waveform design[J]. Telecommunication Systems, 2021, 77: 317-334.
[3] 李青, 潘成胜, 杨阳, 等. 基于稀疏表示的NMF抗混响方法[J]. 舰船科学技术, 2023, 45(17): 129-134.
LI Q, PAN C S, YANG Y, et al. Research on anti-reverberation method of NMF based on sparse representation[J]. Ship Science and Technology, 2023, 45(17): 129-134.
[4] JIA H, LI X. Underwater reverberation suppression based on non-negative matrix factorisation[J]. Journal of Sound and Vibration, 2021, 506: 116166.
[5] DOISY Y, DERUAZ L, IJSSELMUIDE SP, et al. Reverberation suppression using wideband Doppler-sensitive pulses[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 419-433.
[6] LEE D H, SHIN J W, DO D W, et al. Robust LFM target detection in wideband sonar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2399-2412.
[7] PARK J, KIM G, SEOK J, et al. Pulsed active sonar using generalized sinusoidal frequency modulation for high-speed underwater target detection and tracking[J]. IEEE Access, 2023.
[8] 王磊, 朱堃. 运动平台低频混响的方位-多普勒谱特性研究[J]. 声学学报, 2009, 34(2): 110-116.
[9] 刘建国, 朱凌霄, 严胜刚. 运动平台混响的时空耦合统计模型[J]. 声学学报, 2018, 43(4): 481-494.
[10] 黄晓燕, 冯西安, 高天德. 浅海主动声呐空时自适应混响抑制方法[J]. 计算机工程与应用, 2015, 51(11): 187-189+217.
[11] 寇思玮, 冯西安, 黄辉, 等. 一种基于混响干扰稀疏重构的STAP方法[J]. 西北工业大学学报, 2020, 38(6): 1179-1187.
[12] PALLOTTA L, FARINA A, SMITH S T, et al. Phase-only space-time adaptive processing[J]. IEEE Access, 2021, 9: 147250-147263.
[13] 曹宦植, 蔡志明, 幸高翔, 等. 基于分裂阵配置的旁瓣抑制方法[J]. 电子学报, 2019, 47(6): 1388-1392.
[14] CHEN T, WU Y, ZHANG W, et al. Insight into split beam cross-correlator detector with the prewhitening technique[J]. IEEE Access, 2019, 7: 160819-160828.
[15] SALZ J, STEIN S. Distribution of instantaneous frequency for signal plus noise[J]. IEEE Trans. Inform. Theory, 1964, IT-10(10): 272-274.
[16] WAITE A D. Sonar for Practising Engineers 3rd[M]. UK: John Wiley & Sons Ltd, 2002.