舰船航行环境复杂多变,易对舰船的安全高效航行带来一定影响,为应对复杂多变的航行环境,实现精准避碰的安全高效航行目的,研究基于机器视觉的舰船航行交互系统。通过系统的数据采集处理模块,运用机器视觉核心的CCD摄像头,采集并灰度化处理舰船航行图像,并以此类图像为依据,得到舰船的航行位置与轨迹等信息;通过智能交互模块交互传输此类信息至系统微控制器,控制航行控制模块操控舰船的电机、舵机及视觉导航,实现舰船航行速度、方向及路径的交互控制。结果显示,该系统可依据机器视觉技术所采集处理的舰船航行图像,实现对舰船航行方向的精准控制,获得可精准避开各种复杂形态障碍物的航行路径,有效应对复杂多变的航行环境,保障舰船的安全高效航行。
The navigation environment of ships is complex and changeable, which is easy to have certain impact on the safe and efficient navigation of ships. In order to cope with the complex and changeable navigation environment and achieve the safe and efficient navigation purpose of precise collision avoidance, a ship navigation interactive system based on machine vision is studied. Through the data acquisition and processing module of the system, the CCD camera of the core of machine vision is used to collect and process ship sailing images, and the information of ship sailing position and trajectory is obtained based on such images. Such information is interactively transmitted to the system microcontroller through the intelligent interaction module, which controls the navigation control module to control the motor, steering gear and visual navigation of the ship, and realizes the interactive control of the ship's sailing speed, direction and path. The results show that the system can accurately control the ship's navigation direction according to the ship's navigation images collected and processed by the machine vision technology, obtain the navigation path that can accurately avoid various complex obstacles, effectively deal with the complex and changeable navigation environment, and ensure the safe and efficient navigation of the ship.
2024,46(23): 152-155 收稿日期:2024-1-23
DOI:10.3404/j.issn.1672-7649.2024.23.026
分类号:TP242
作者简介:胡艺萍(1982-),女,讲师,研究方向为视觉传达设计
参考文献:
[1] 王鸿东, 易宏, 向金林, 等. 基于海事规则的中型无人艇避碰路径规划算法研究及应用[J]. 中国舰船研究, 2022, 17(5): 184-195+203.
WANG H D, YI H, XIANG J L, et al. Research and application of collision avoidance path planning algorithm for medium unmanned craft based on maritime rules[J]. Chinese Ship Research, 2022, 17(5): 184-195+203.
[2] 滕建平, 梁霄, 陶浩, 等. 无人水下航行器全局路径规划及有限时间跟踪控制[J]. 上海海事大学学报, 2022, 43(1): 1-7.
TENG J P, LIANG X, TAO H, et al. Global path planning and finite time tracking control for unmanned underwater vehicles[J]. Journal of Shanghai Maritime University, 2022, 43(1): 1-7.
[3] 周怡, 袁传平, 谢海成, 等. 基于DDPG算法的游船航行避碰路径规划[J]. 中国舰船研究, 2021, 16(6): 19-26+60.
ZHOU Y, YUAN C P, XIE H C, et al. Collision avoidance path planning for cruise ships based on DDPG algorithm[J]. Chinese Ship Research, 2021, 16(6): 19-26+60.
[4] 黄晓冬, 苑海涛, 毕敬, 等. 基于DQN的海战场舰船路径规划及仿真[J]. 系统仿真学报, 2021, 33(10): 2440-2448.
HUANG X D, YUAN H T, BI J, et al. Ship path planning and simulation of naval battle field based on DQN[J]. Journal of System Simulation, 2021, 33(10): 2440-2448.
[5] RENAN M, SUSANNA K, INGRID B, et al. Risk-based path planning for preventing collisions and groundings of maritime autonomous surface ships[J]. Ocean Engineering, 2023, 290(15): 17-23.
[6] 张立华, 周寅飞, 贾帅东, 等. 一种有效顾及复杂海域避碰的路径规划方法[J]. 哈尔滨工程大学学报, 2023, 44(1): 56-64.
ZHANG L H ZHOU Y F, JIA S D, et al. An effective path planning method for collision avoidance in complex sea areas[J]. Journal of Harbin Engineering University, 2023, 44(1): 56-64.
[7] 仝光, 李解, 徐飞, 等. 基于机器视觉与物联网云平台的无人扫路车路径规划系统设计[J]. 中国工程机械学报, 2021, 19(6): 518-523.
TONG G, LI X, XU F, et al. Design of path planning system for unmanned road sweeping vehicles based on machine vision and internet of things cloud platform[J]. Chinese Journal of Construction Machinery, 2021, 19(6): 518-523.