舰船图像增强对目标图像特征提取具有非常重要的意义。本文研究雾天图像成像模型,设计基于卷积神经网络的雾天舰船图像增强的算法流程,包括图像数据准备、卷积神经网络模型构建、模型训练以及图像增强等4个阶段,最后对舰船图像增强前后效果进行对比,雾天船舶图像背景和细节都得到加强,表明本文提出的基于卷积神经网络的雾天舰船图像增强方法行之有效,能够有效提升图像质量。
Ship image enhancement plays an important role in feature extraction of target image. In this paper, the image model of foggy ship is studied, and the algorithm flow of foggy ship image enhancement based on convolutional neural network is designed, which includes four stages: image data preparation, convolutional neural network model construction, model training and image enhancement. Finally, the effects before and after ship image enhancement are compared, and the background and details of ship image in foggy day are enhanced. The results show that the convolutional neural network based image enhancement method proposed in this paper is effective and can effectively improve the image quality.
2024,46(23): 160-163 收稿日期:2024-4-16
DOI:10.3404/j.issn.1672-7649.2024.23.028
分类号:U667.65
基金项目:教育部协同育人资助项目(2220602842241520)
作者简介:刘好斌(1981-),男,硕士,实验师,研究方向为图像处理及软件测试
参考文献:
[1] 徐东红, 李彬, 齐勇. 面向云数据中心基于改进A2C算法的任务调度策略[J]. 计算机科学, 1-15.
XU D H, LI B, QI Y. Task scheduling strategy for cloud data center based on improved A2C algorithm [J]. Computer Science, 1-15.
[2] 陈富强. 网络中计算任务调度建模与算法研究[D]. 成都: 电子科技大学, 2024.
[3] 王立红, 张延华, 孟德彬, 等. 基于DDPG算法的云数据中心任务节能调度研究[J]. 高技术通讯, 2023, 33(9): 927-936.
WANG L H, ZHANG Y H, MENG D B, et al. Research on energy-saving task scheduling of cloud data center based on DDPG algorithm[J]. High Technology Letters, 2023, 33(9): 927-936.
[4] 曾磊, 白金明, 刘琦. 多群落粒子群优化供应链数据中心任务调度[J]. 应用科学学报, 2023, 41(3): 419-430.
ZENG L, BAI J M, LIU Q. Multi-colonial particle swarm optimization for supply chain data center task scheduling[J]. Journal of Applied Sciences, 2023, 41(3): 419-430.
[5] 马璐, 刘铭, 李超, 等. 面向6G边缘网络的云边协同计算任务调度算法[J]. 北京邮电大学学报, 2020, 43(6): 66-73.
MA L, LIU M, LI C, et al. Cloud-edge collaborative computing task scheduling algorithm for 6G Edge Network[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(6): 66-73.
[6] 孟嘉, 厉文婕, 于广荣, 等. 面向效用最大化的数据中心动态资源分配[J]. 计算机应用研究, 2021, 38(6): 1728-1733+1779.
MENG J, LI W J, YU G R, et al. Dynamic resource allocation for utility maximization in data centers[J]. Computer Applications and Software, 2021, 38(6): 1728-1733+1779.