针对舰船内部环境复杂,难以实现精准定位的问题,本文针对窄带物联网(NB-IoT)通信环境,提出一种基于信标定位的舰船内部精准定位技术。首先,在舰船内部的关键位置部署NB-IoT信标节点,利用NB-IoT核心网络,将信标节点定期发送的包含位置信息的信号传送至NB-IoT云平台。然后,在NB-IoT云平台中,整理并汇集定位数据,再将数据传送至定位应用服务器。最后,利用定位应用服务器选取距离边界模型,构建舰船内部的信标定位信号传输模型。依据所构建的信号传输模型,利用同步解算方法,通过线性解法求解舰船内部信标位置,实现舰船内部的精准定位。实验结果表明,该技术的定位覆盖率高于98%,平均定位误差低于1 m,说明该技术能够实现对舰船内部的精准定位。
In response to the complex internal environment of ships and the difficulty in achieving precise positioning, this study proposes a beacon based precise positioning technology for ships in NB-IoT communication environments. Firstly, NB-IoT beacon nodes are deployed at key locations inside the ship, utilizing the NB-IoT core network to transmit signals containing location information periodically sent by the beacon nodes to the NB-IoT cloud platform. Then, in the NB-IoT cloud platform, the positioning data is organized and collected, and then transmitted to the positioning application server. Finally, the distance boundary model is selected using the positioning application server to construct a beacon positioning signal transmission model inside the ship. Based on the constructed signal transmission model, the synchronous solution method is used to solve the position of the internal beacon of the ship through linear solution, achieving accurate positioning inside the ship. The experimental results show that the positioning coverage of this technology is higher than 98%, and the average positioning error is less than 1m, indicating that this technology can achieve precise positioning of the interior of ships.
2024,46(23): 164-168 收稿日期:2024-3-11
DOI:10.3404/j.issn.1672-7649.2024.23.029
分类号:U666.1;TP391
基金项目:2024年度吉林省高等教育教学改革研究重点课题(2024L5LYR3J005L)
作者简介:张晓娜(1982-),女,博士,讲师,研究方向为室内外定位技术
参考文献:
[1] 张艺严, 马巍, 李彬. 能量受限无人机与移动舰船通信中的轨迹优化[J]. 中国舰船研究, 2022, 17(4): 47-56.
ZHANG Y Y, MA W, LI B. Trajectory optimization for communication between energy-constrained UAV and moving ship[J]. Chinese Journal of Ship Research, 2022, 17(4): 47-56.
[2] 孙杰, 吕文祺, 祁新杰. 船岸连接与船船连接复合通信系统设计[J]. 船舶工程, 2024, 46(S1): 399-403.
SUN J, LV W Q, QI X J. Design of composite communication system for ship-shore link and ship-ship link[J]. Ship Engineering, 2024, 46(S1): 399-403.
[3] 刘亚琴, 杨士莪, 张海刚, 等. 利用辐射噪声对舰船进行定位[J]. 哈尔滨工程大学学报, 2021, 42(7): 921-927.
LIU Y Q, YANG S E, ZHANG H G, et al. Localization of ship using radiated noise[J]. Journal of Harbin Engineering University, 2021, 42(7): 921-927.
[4] 李洋, 张杨, 朱浩平, 等. 应用星载AIS双天线的舰船快速定位方法[J]. 航天器工程, 2021, 30(4): 15-22.
LI Y, ZHANG Y, ZHU H P, et al. Method of fast ship positioning using spaceborne AIS with twin antennas[J]. Spacecraft Engineering, 2021, 30(4): 15-22.
[5] SKULSTAD R, LI G, FOSSEN T I, et al. Constrained control allocation for dynamic ship positioning using deep neural network[J]. Ocean Engineering, 2023, 279(Jul), 114434.
[6] 秦显平, 明锋, 许扬胤. 考虑信标运动的水下联合定位算法[J]. 哈尔滨工程大学学报, 2023, 44(11): 2036-2043.
QIN X P, MING F, XU Y Y. Underwater combined positioning algorithm considering beacon movement[J]. Journal of Harbin Engineering University, 2023, 44(11): 2036-2043.
[7] 尹洋, 杨全顺, 王征, 等. 通信距离约束下的无人船集群覆盖搜索方法[J]. 系统工程与电子技术, 2022, 44(12): 3821-3828.
YIN Y, YANG Q S, WANG Z, et al. USV cluster coverage search method with communication distance constraint[J]. Systems Engineering and Electronics, 2022, 44(12): 3821-3828.