本文针对某航行体减阻装置在大冲击条件下的疲劳断裂问题开展研究。首先采用理论和仿真方法,分析减阻结构周围的流体压强分布规律,获取减阻结构转动力矩的变化特征,在此基础上对减阻结构在冲击载荷下张开过程的应力分布特性进行分析并校核结构强度;基于电镜检测方法研究失效部位的微观断裂特征,得到断裂缺口微观形貌特征,建立宏观损伤特征与微观断裂的关联,最终确定断裂失效的主要因素。本文提出的基于多尺度法对结构断裂失效进行分析,为结构安全评估提供了一种新思路。
This paper conducts research on the fatigue fracture issue of a drag reduction device for a certain vehicle under conditions of high impact. Initially, a theoretical plus simulation approach is utilized to analyze the distribution pattern of fluid pressure around the drag reduction structure, thereby characterizing the variation in the torque of the drag reduction structure. Based on this, an analysis is conducted on the stress distribution characteristics of the drag reduction structure during the deployment process under impact loading, and the structural strength is verified. Employing electron microscopy for inspection, the micro-fracture characteristics of the failed area are studied to ascertain the micro-morphological features of the fracture notch. A correlation is established between macroscopic damage characteristics and micro-fracture. Ultimately, the primary causes of fracture failure are identified. The paper proposes a multi-scale method for analyzing structural fracture failure, offering a novel perspective for structural safety assessment.
2024,46(24): 10-14 收稿日期:2024-3-20
DOI:10.3404/j.issn.1672-7649.2024.24.002
分类号:U668.2
基金项目:国家自然科学基金面上资助项目(52371356)
作者简介:孙卓(1972-),女,研究员,研究方向为水下发射技术
参考文献:
[1] 都军民, 孙卓, 魏建峰. 舵板张开过程的数值仿真与试验研究[J]. 机械科学与技术. 2013(3): 426–429.
[2] 李四超. 水下航行体舵板张开特性研究与分析[J]. 海军航空工程学院学报. 2016(4): 475–479.
[3] 王进. 强冲击载荷下金属钽的变形与损伤及其各向异性研究[D]. 重庆: 西南大学, 2023.
[4] MEYERS MA. Dynamic behavior of materials[M]. Chichester: John Wile & Sons, 1994.
[5] HOPKINSON B. A method of measuring the pressure produced in the detonation of bullets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1914, 213(497-508): 437-456.
[6] SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals[J]. Journal of applied physics, 2002, 92(10): 5830-5836.
[7] ZELLNER M B, MCNEIl W V, HAMMERBERG J E, et al. Probing the underlying physics of ejecta production from shocked Sn samples[J]. Journal of Applied Physics, 2008, 103(12): 1–7.
[8] 周洪强, 张凤国, 潘昊, 等. 材料层裂研究的主要进展[J]. 高压物理学报, 2019, 33(5): 1–20.
[9] 倪向贵, 李新亮, 王秀喜. 疲劳裂纹扩展规律Paris公式的一般修正及应用[J]. 压力容器, 2006, 23(12): 1–9.
[10] 于国鹏, 段庆全, 张宏. Paris公式疲劳常数测定的有限元法[J]. 焊管, 2009(6): 18–24.
[11] 陈龙, 黄天立, 周浩. 基于比例型Paris公式和逆高斯过程的金属疲劳裂纹扩展随机模型[J]. 工程力学, 2021, 38(10): 238–247.
[12] 陈建, 吴林志, 杜善义. 采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子[J]. 工程力学, 2000, 17(5): 139–144.
[13] 莫梦婷, 赵文杰, 陈子飞, 等. 海洋减阻技术的研究现状[J]. 摩擦学学报, 2015, 35(4): 505–515.
[14] 时党勇, 李裕春, 张胜民. 基于Ansys/LS-DYNA8.1进行显式动力分析[D]. 北京: 清华大学出版社, 2002.
[15] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997.