高速船在其营运期内某些区域容易出现疲劳损伤。目前,各船级社提出的疲劳强度简化计算方法是针对常规船型,不完全适用于高速船,因此有必要开展相关研究。本文将疲劳规范与适用于高速船的载荷计算相结合,采用有限元进行应力分析,计算载荷循环次数时考虑航速影响,再结合计算工况、超越概率水平、疲劳试验等因素开展高速船纵骨节点的疲劳分析。以实船为例进行计算,并从应力方面与规范值进行对比分析,从而提出一种合理的疲劳强度简化计算方法。结果显示,该方法是在原规范基础上针对高速船型进行的合理改进,目标船疲劳校核节点满足设计使用寿命要求。采用该疲劳简化计算方法对铝合金高速船结构设计具有实际参考意义。
Certain areas of high-speed crafts are prone to appear fatigue damage during their operational lifespan. The simplified calculation methods of the fatigue strength proposed by various classification societies are aimed at conventional vessel types and are not fully applicable to high-speed crafts. Therefore, it is necessary to conduct relevant research. This article combines fatigue rules and load calculation applying to high-speed crafts, using finite element analysis for stress calculation. When calculating the number of load cycles, the influence of the sailing speed is considered. Fatigue analysis of high-speed craft longitudinal frame nodes is conducted by integrating factors such as calculation conditions, exceedance probability levels and fatigue tests. Taking a specific real craft as an example, calculations were performed and compared with the normative values from a stress perspective, proposing a reasonable simplified fatigue strength calculation method. The results show that this method is a rational improvement over the original specifications tailored for high-speed craft types. The fatigue check nodes of the target craft meet the requirements for design service life. The adoption of this simplified fatigue calculation method is practically significant for the structural design of aluminum alloy high-speed crafts.
2024,46(24): 20-27 收稿日期:2024-4-22
DOI:10.3404/j.issn.1672-7649.2024.24.004
分类号:U661.43
作者简介:王伟(1991-),男,硕士,工程师,研究方向为船体结构设计
参考文献:
[1] 何建伟, 王祝堂. 船舶舰艇用铝及铝合金[J]. 轻合金加工技术, 2015, 43(8): 1-11.
HE J W, WANG Z T. Aluminum and its alloys for ships and naval vessels[J]. Light Alloy Fabrication Technology, 2015, 43(8): 1-11.
[2] TERESA M. Fatigue damage sensitivity analysis of a naval high speed light craft via spectral fatigue analysis[J]. Ships and Offshore Structures, 2020, 15(3): 236–248.
[3] 许维军, 华真, 任慧龙, 等. 计及砰击载荷的舰船疲劳损伤直接计算法分析[J]. 中国舰船研究, 2022, 17(3): 264-272.
XU W J, HUA Z, REN H L, et al. Analysis of the direct calculation method of ship fatigue damage considering slamming load[J]. Chinese Journal of Ship Research, 2022, 17(3): 264-272.
[4] 乐京霞, 李建锋, 郭宇龙. 一种计及波激振动的船舶结构疲劳损伤的计算方法[J]. 船舶力学, 2022, 26(1): 103–112.
YUE J X, LI J F, GUO Y L. Calculation method of fatigue damage of hull structure considering springing[J]. Journal of Ship Mechanics, 2022, 26(1): 103–112.
[5] 周陈炎, 张佳宁, 孟巧, 等. 基于改进四峰谷值雨流计数法的船舶疲劳强度评估[J]. 船海工程, 2022, 51(6): 42–46+52.
ZHOU C Y, ZHANG J N, MENG Q, et al. Fatigue strength assessment of a trimaran based on rain-flow counting method of improved four peak-to-valley[J]. Ship & Ocean Engineering, 2022, 51(6): 42–46+52.
[6] GAIDAI O, STORHAUG G, NAESS A, et al. Efficient fatigue assessment of ship structural details[J]. Ships and Offshore Structures, 2020, 15(5): 503-510.
[7] 周陈炎, 吴颖高, 孟巧, 等. 基于谱分析法的铝合金三体船疲劳强度直接计算分析[J]. 船舶, 2021, 32(5): 40-46.
ZHOU C Y, WU Y G, MEN Q, et al. Direct calculation and analysis of fatigue strength for aluminum-alloy trimaran based on spectral analysis method[J]. Ship & Boat, 2021, 32(5): 40-46.
[8] YOUSEFI R, SHAFAGHAT R, SHAKERI M. High-speed planning hull drag reduction using tunnels[J]. Ocean Engineering, 2014, 84: 54-60.
[9] 邓乐, 肖渤舰. 船舶疲劳强度校核中Weibull分布相关参数的影响[J]. 船海工程, 2015, 44(2): 58–60.
DENG L, XIAO B J. On Influence of the parameters in weibull distribution for ship’s fatigue strength[J]. Ship & Ocean Engineering, 2015, 44(2): 58–60.
[10] CAI S, HAN T, WU J. Research on simplified fatigue assessment for longitudinals of large container ship considering warping[C]//ISOPE International Ocean and Polar Engineering Conference, 2020.
[11] 唐首祺, 刘宁, 任慧龙. 一种气垫船结构疲劳分析的简化方法[J]. 中国舰船研究, 2021, 16(3): 128–136.
TANG S Q, LIU N, REN H L. A simplified method for structural fatigue analysis of hovercraft[J]. Chinese Journal of Ship Research, 2021, 16(3): 128–136.
[12] 刘宁, 唐首祺, 任慧龙. 基于国内外部分规范的疲劳强度简化计算对比研究[C]//中国造船工程学会船舶力学学术委员会, 2019年船舶结构力学学术会议论文集, 2019.
LIU N, TANG S Q, REN H L. Comparative study on simplified calculation of fatigue strength based on some domestic and foreign codes[C]//Proceedings of the Conference on Ship Structural Mechanics in 2019, 2019.
[13] 中国船级社. 船体结构疲劳强度指南[S]. 北京: 人民交通出版社, 2021.
[14] 中国船级社. 海上高速船入级及建造规范[S]. 北京: 人民交通出版社, 2022.
[15] 缪素菲, 刘敬喜, 赵耀, 等. 船用铝合金板架结构典型节点的疲劳试验研究[J]. 船舶力学, 2020, 24(7): 934–941.
MIAO S F, LIU J X, ZHAO Y, et al. Exerimented study of fatigue properties of aluminium alloy plate[J]. Journal of Ship Mechanics, 2020, 24(7): 934–941.
[16] 朱军, 陈俊锋, 葛义军. 规则波浪中船舶操纵响应遭遇频率频散概念与机制[J]. 海军工程大学学报, 2010, 22(3): 7-10+20.
ZHU J, CHEN J F, GE Y J. Conception and mechanism of ship frequency dispersion by maneuvering motions in regular waves[J]. Journal of Naval University of Engineering, 2010, 22(3): 7-10+20 .
[17] 方钟圣. 西北太平洋波浪统计集[M]. 北京: 国防工业出版社, 1996.