为了获得弹体入水后的运动规律、液体压缩状况、空泡发展演化规律,建立包含空气、弹体和水的三维流-固耦合数值计算模型。在弹体初始速度分别为500 m/s、750 m/s、1000 m/s、1250 m/s、1500 m/s的情况下,开展数值仿真计算,获得高速入水过程中弹体的速度、加速度、表面压力以及弹体周围薄层内流体密度的变化规律。计算分析结果表明,弹体的加速度、弹体周围薄层内流体的压强峰值随着弹体初始速度的增加而增加,而弹体的速度在入水过程中反而快速下降;弹体高速入水时,表面液体压力急剧增加,弹体周围薄层内的流体密度随之增大,弹体表面的空泡不易闭合。
In order to obtain the motion law, liquid compression state and development & evolution law of cavitation after the water-entry of projectile,a 3-D fluid-solid coupling (FSI) numerical model involving air, projectile and water is established. In the condition of the initial velocity of the projectile is 500 m/s, 750 m/s, 1000 m/s, 1250 m/s and 1500 m/s respectively, the numerical simulation is carried out, and then the change law of velocity, acceleration, surface pressure and fluid density in the thin layer around the projectile during high-speed projectile water entry were obtained. The results show that the acceleration of the projectile and the peak pressure of the fluid in the thin layer around the projectile increased with the increase of the initial velocity of the projectile, but the velocity of the projectile decreased rapidly during the process of water-entry. When the projectile entered water at high speed, the pressure of surface liquid increased sharply and the fluid density in the thin layer around the projectile increased accordingly, the surface cavitation of the projectile is not easy to get closed.
2024,46(24): 40-45 收稿日期:2023-12-17
DOI:10.3404/j.issn.1672-7649.2024.24.007
分类号:U661.1;O359
基金项目:国家自然科学基金资助项目(51969017)
作者简介:费根胜(1979-),男,硕士,高级工程师,研究方向为流固数值仿真模拟
参考文献:
[1] 张宇文, 袁绪龙. 超空泡航行体流体动力学[M]. 北京:国防工业出版社, 2014.
[2] HURD R C, BELDEN J, JANDRON M A, et al. Water entry of deformable spheres[J]. Journal of Fluid Mechanics, 2017, 824: 912-930.
[3] MARSTON J O, TRUSCOTT T T, SPEIRS N B, et al. Crown sealing and buckling instability during water entry of spheres[J]. Joural of Fluid Mechanics, 2016, 794: 506-529.
[4] GRUMSTRUP T, KELLER B J, BELMONTE A. Cavity ripples observed during the impact of solid objects into liquid[J]. Physical Review Letters, 2007, 99(11): 1-41.
[5] SUDO S, TAKAYANAGI H, KAMIYAMA S. Water entry of a magnetic fluid coated sphere[C] // 12th International Conference on Magnetic Fluids. Sendai, JAPAN, 2010, 323(10): 1348–1353.
[6] BODILY K G, CARLSON S J, TRUSCOTT T T. The water entry of slender axisymmetric bodies[J]. Physics of Fluids, 2014, 26(7): 072108.
[7] ERFANIAN M R, ANBARSOOZ M, RAHIMI N, et al. Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem[J]. Ocean Engineering, 2015, 104: 397-404.
[8] DERAKHSHANIAN M S, HAGHDEL M, ALISHAHI M M, et al. Experimental and numerical investigation for a reliable simulation tool for oblique water entry problems[J]. Ocean Engineering, 2018, 160: 231-243.
[9] MIRZAEI M, TAGHVAEI H, ALISHAHI M M . Mathematical modeling of the oblique water-entry of cylindrical projectiles[J]. Ocean Engineering, 2020, 205(2): 107-257.
[10] AKBARI M A, MOHAMMADI J, FEREIDOONI J. Stability of oblique water entry of cylindrical projectiles[J]. Journal of Applied Fluid Mechanics, 2021 14(1): 301–314.
[11] YOO HS, CHOI HY, KIM TH, et al. Effect of wettability on the water entry of spherical projectiles: Numerical analysis using smoothed particle hydrodynamics[J]. AIP Advances, 2022, 12(3): 035014.
[12] 路中磊, 魏英杰, 王聪, 等. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究[J]. 物理学报, 2016, 65(1): 1–15.
[13] 周杰, 徐胜利, 彭杰. 弹丸高速斜侵彻入水流场显示的初步研究[J]. 高压物理学报, 2018, 32(1): 1-8.
[14] 孙钊, 曹伟, 王聪. 半疏水-半亲水球体垂直入水空泡数值仿真研究[J]. 兵工学报, 2017, 38(5): 968–977.
[15] HOU Z, SUN T Z, QUAN X B, et al. Large eddy simulation and experimental investigation on the cavitation dynamics and vortex evolution for oblique water entry of a cylinder[J]. Applied Ocean Research, 2018, 81: 76-92.
[16] CHEN C, SUN T Z, WEI Y J, et al. Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 8(1):15–39.
[17] TRUSCOTT T T, EPPS B P, BELDEN J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46: 355-378.