声学多普勒流速剖面仪(Acoustic Doppler Current Profiler,ADCP)作为与小型三体科考船浮体尺寸相当的凸出附体,既会影响三体科考船流体动力学,也会因船体兴波导致测量结果存在一定误差。本文基于数值仿真方法,研究各种ADCP安装方案对小型三体科考船流体动力学以及ADCP测量精度的影响,获得了小型三体科考船运动过程中的兴波速度,包括ADCP沿其长度和深度不同位置的影响,并分析得出船体和ADCP周围流动的不利干扰区域。研究结果表明,ADCP沿船体布置位置的不同,对ADCP测量流速的校正量约为5%~10%;结合小型三体科考船阻力以及兴波速度,ADCP的最佳安装和位置为“自由”固定在船体中段、下沉量为0。
Acoustic doppler current profiler (ADCP), as a protruding attachment with a size equivalent to that of a small three body research vessel, not only affects the fluid dynamics of the three body research vessel, but also results in measurement errors due to the wave making of the vessel. This article is based on numerical simulation methods to study the effects of various ADCP installation schemes on the fluid dynamics and ADCP measurement accuracy of small three body scientific research ships. The wave making velocity during the motion of small three body scientific research ships, including the influence of ADCP at different positions along their length and depth, is obtained, and the unfavorable interference areas of the flow around the hull and ADCP are analyzed. The research results indicate that the correction amount for measuring flow velocity by ADCP is 5%~10% depending on the placement of ADCP along the hull. The optimal installation and position for ADCP, taking into account the resistance and wave making speed of the small three body research vessel, is to be "freely" fixed in the middle of the hull with zero sinking.
2024,46(24): 46-51 收稿日期:2024-5-30
DOI:10.3404/j.issn.1672-7649.2024.24.008
分类号:U674.951
基金项目:基础加强计划重点基础研究项目(2020-JCJQ-ZD-232)
作者简介:张伟(1989-),女,讲师,研究方向为船舶水动力与操纵性
参考文献:
[1] 黄骏, 宗涛, 陈文炜, 等. 测波浮标与ADCP的现场对比试验研究[J]. 舰船科学技术, 2017, 39(21): 127-131.
HUANG J, ZONG T, CHEN W W, et al. Field comparative experimental study of wave buoy and ADCP[J]. Ship Science and Technology, 2017, 39(21): 127-131
[2] 曹忠义, 孙大军, 张志鑫, 等. 声学多普勒测速技术综述[J]. 哈尔滨工程大学学报, 2023, 44(11): 1914-1926.
CAO Z Y, SUN D J, ZHANG Z X, et al. Review of acoustic doppler velocimetry technology[J]. Journal of Harbin Engineering University, 2023, 44(11): 1914-1926
[3] CHEBAN E Y, MARTMIANOVA O V, KOZHEVNIKOV A I, et al. Study of boat's appendages hydrodynamics by numerical methods[J]. Russian Journal of Water Transport, 2022, 72, 54-69.
[4] 刘健宇, 段文洋, 廖康平. 不同附体布置下的三体船波浪中运动数值模拟研究[J]. 水动力学研究与进展A辑, 2021, 36(6): 772-780.
LIU J Y, DUAN W Y, LIAO K P. Numerical simulation of the motion of a small three body scientific research ship in waves with different attachment arrangements[J]. Hydrodynamic Research and Progress A, 2021, 36(6): 772-780
[5] 田艳丽. 水下导航拖曳载体水动力性能分析[J]. 船舶工程, 2020, 42(2): 110-114.
TIAN Y L. Hydrodynamic performance analysis of underwater navigation towing carriers[J]. Ship Engineering, 2020, 42(2): 110-114
[6] 赵爱博, 徐大伟, 奚子惠, 等. 船行波对H-ADCP影响分析研究[J]. 海洋技术学报, 2024, 43(1): 47-54.
ZHAO A B, XU D W, XI Z H, et al. Analysis and research on the impact of ship waves on H-ADCP[J]. Journal of Marine Technology, 2024, 43(1): 47-54
[7] SALAS M, TAMPIER B G. Assessment of appendage effect on forward resistance reduction[J]. Ciencia y tecnología de buques. 2013, 7(37). 82-90.
[8] HAG S J, HWA J L, YOUNG R J, et al. Some practical design aspects of appendages for passenger vessels[J]. International Journal of Naval Architecture and Ocean Engineering Volume, 2009, 1(1): 50-56.
[9] THU H T, YE T H. The experimental and numerical study of the appendage DRAG influence on resistance of ship[J]. International Journal of Maritime Affairs and Fisheries Volume, 2017, 2(9), 031-039.
[10] 黄宇峰. 高速小型三体科考船纵向运动抑制及附体尺寸布局设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[11] 梁家健, 陈京普, 赵强, 等. 基于CFD的测量船附体综合优化设计[J]. 船舶工程, 2021, 43(12): 47-51.
LIANG J J, CHEN J P, ZHAO Q, et al. Comprehensive optimization design of measurement ship appendages based on CFD[J]. Ship Engineering, 2021, 43(12): 47-51
[12] 张贝, 高志旺, 王志东, 等. 基于多种组合算法的船附体结构设计优化[J]. 舰船科学技术, 2021, 43(23): 65-70.
ZHANG B, GAO Z W, WANG Z D, et al. Optimization of ship attachment structure design based on multiple combination algorithms[J]. Ship Science and Technology, 2021, 43(23): 65-70.
[13] LUKINA E A, CHEBAN E Y, NIKUSHCHENKO D V, et al. Investigation of the hydrodynamic impact of a planing small vessel on a water body[J]. Marine Intelligent Technologies, 2021, 54(2): 129-134.