为了探索端壁狭缝射流对舰用燃气轮机压气机叶栅性能的影响,本文采用带转捩的SST k-ω湍流模型对压气机叶栅气动性能进行数值模拟,探究了端壁狭缝射流的射流角度和组合方式对压气机叶栅流动分离的影响规律。结果发现,端壁狭缝射流具有显著抑制叶栅角区分离、降低流动损失的作用,其中组合射流具有更好的流动控制效果。在射流流量仅为0.435%主流流量的情况下,30°组合射流可使损失降低27.63%,静压系数提高9.2%。端壁狭缝射流主要通过抑制端区二次流动、促进低能流体与主流的掺混和控制通道涡、集中脱落涡及诱导涡的发展来降低叶栅损失,改善叶栅性能。
In order to explore the effect of end-wall slot jet on the performance of compressor cascades in marine gas turbines, the SST k-ω turbulence model with transition was adopted to numerically simulate the aerodynamic performance of compressor cascades. And the influence of the jet angle and combination method of the end-wall slot jet on the flow separation of compressor cascades was explored. It can be found that the end-wall slot jet significantly inhibited the corner separation and reduced flow loss, among which the combined jet has better flow control effect. When the jet flow rate is only 0.435 % of the mainstream flow rate, 30° combined jet can reduce the loss by 27.63% and increase the static pressure coefficient by 9.2%. The end-wall slot jet mainly reduces the flow loss and improves the performance of the cascade by suppressing the secondary flow in the endwall region, promoting the mixing of low-energy fluid with mainstream, and controlling the development of passage vortex, concentrated shed vortices, and induced vortices.
2024,46(24): 56-61 收稿日期:2024-4-9
DOI:10.3404/j.issn.1672-7649.2024.24.010
分类号:V231
基金项目:江苏省高校自然科学基金面上项目(20KJB580008);江苏海事职业技术学院科技创新基金资助项目(2021kjcx003)
作者简介:左财宝(1972-),男,轮机长,研究方向为舰船燃气轮机
参考文献:
[1] WENNERSTROM A J. Highly loaded axial flow compressors: history and current developments[J]. Journal of Turbomachinery, 1990, 112(4): 567-578.
[2] QI L, ZOU Z, WANG P, et al. Control of secondary flow loss in turbine cascade by streamwise vortex[J]. Computers & Fluids, 2012(54): 45-55.
[3] KAN X X, LU H W. Topological characterization of vortex structures on a transonic compressor stator during the stall process[J]. Journal of Aerospace Engineering, 2016, 230(3): 566-580.
[4] 张健, 杜娟, 陈泽, 等. 高负荷压气机叶栅流动分离的主动控制方法综述[J]. 工程热物理学报, 2022, 43(5): 1190-1202.
[5] ZHANG Longxin, CHEN Shaowen, XU Hao. Effect of boundary layer suction on aerodynamic performance of high-turning compressor cascade[R]. ASME Paper 2014-GT-94907, 2013.
[6] GREGORY J W, SULLIVAN J P, RAMAN G, et al. Characterization of the microfluidic oscillator[J]. AIAA Journal, 2007, 45(3): 568-576.
[7] 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制[J]. 航空学报, 2012, 33(2): 208-219.
[8] SINNETTE T, COSTELLO G. Possible application of blade boundary-layer control to improvement of design and off-design performance of axial-flow turbomachines[R]. NACA-TN-2371. Ohio: Lewis Flight Propulsion Laboratory, 1951.
[9] NERGER D, SAATHOFF H, RADESPIEL R, et al. Experimental investigation of endwall and suction side blowing in a highly loaded compressor stator cascade[J]. Journal of Turbomachinery, 2012, 134(2): 021010.
[10] STURM W, SCHEUGENPFLUG H, FOTTNER L. Performance improvements of compressor cascades by controlling the profile and sidewall boundary layers[J]. Journal of Turbomachinery, 1992, 114: 477-486.
[11] GMELIN C, STEGER M, THIELE F, et al. Unsteady RANS simulations of a highly loaded low aspect ratio compressor cascade with active flow control[R]. ASME Paper, GT2010-22516, 2010.
[12] HECKLAU M, WIEDERHOLD O, ZANDER V, et al. Active separation control with pulsed jets in a critically loaded compressor cascade[J]. AIAA Journal, 2011, 49(8): 1729-1739.
[13] HECKLAU M, GMELIN C, NITSCHE W, et al. Experimental and numerical results of active flow control on a highly loaded stator cascade[J]. Journal of Power and Energy, 2011, 225(7): 907-918.
[14] 茅晓晨, 刘波, 曹志远, 等. 端壁射流对压气机叶栅角区分离控制的研究[J]. 推 进 技 术, 2014, 35(12): 1615-1622.
[15] 陈萍萍. 轴流压气机角区分离流动损失机理及流动控制策略研究[D]. 西安: 西北工业大学, 2015.
[16] 刘华坪, 俞建阳, 李得英, 等. 端壁组合射流对高速扩压叶栅损失特性的影响[J]. 推进技术, 2016, 37(9): 1673-1680.
[17] 秦勇, 宋彦萍, 陈浮, 等. 合成射流控制高速扩压叶栅二次流的数值模拟[J]. 航空动力学报, 2018, 33(4): 792-802.
[18] 陆华伟, 任冬智, 孔晓治, 等. 端壁非定常脉冲射流对高速扩压叶栅性能的影响[J]. 推进技术, 2023, 44(5): 67-80.