为揭示圆碟形水下滑翔机在近自由面作业时受波浪影响下的运动响应特性,利用粘流CFD技术开展近自由面圆碟形水下滑翔机水动力数值模拟。首先,对圆碟形水下滑翔机在大攻角条件下的水动力性能进行计算;其次,研究圆碟形水下滑翔机在不同来浪条件和距自由面距离下的水动力性能及其动态运动响应。研究结果表明,随着航速的增加,圆碟形水下滑翔机的升力、阻力和俯仰力矩的绝对极值均增大;波高和波长的增加会使圆碟形水下滑翔机的下潜距离增加,同时减小俯仰角并降低滑翔速度。随着圆碟形水下滑翔机距自由面的距离增加,波浪对其运动响应的作用逐渐减弱,圆碟形水下滑翔机的运动趋于稳定。
In order to explores the motion response characteristics of a disc-shaped underwater glider operating near the free surface under the influence of waves, using viscous flow CFD technology for numerical simulations. The analysis first evaluates the glider's hydrodynamic performance at large angles of attack and then examines the effects of varying wave conditions and distances from the free surface on its dynamic motion response. The results indicate that as the glider's speed increases, the extreme values of lift, drag, and pitching moment also rise. Additionally, higher wave heights and longer wavelengths lead to greater dive distances, reduced pitching angles, and slower gliding speeds. As the glider moves farther from the free surface, the impact of waves on its motion response decreases, resulting in more stable behavior.
2024,46(24): 85-91 收稿日期:2024-7-6
DOI:10.3404/j.issn.1672-7649.2024.24.015
分类号:O352
基金项目:国家自然科学基金资助项目(2016YF0301500)
作者简介:吕泽禹(1995-),男,硕士,助理工程师,研究方向为水下滑翔机及航海保障关键装备技术
参考文献:
[1] NAKAMURA M, HYODO T, KOTERAYAMA W, ISOPE. "LUNA" testbed vehicle for virtual mooring[C]//Proceedings of the 17th International Offshore and Polar Engineering Conference (ISOPE 2007), Lisbon, PORTUGAL, 2007. International Society Offshore& Polar Engineers: CUPERTINO, 2007.
[2] NAKAMURA M, KOTERAYAMA W, INADA M, et al. Disk-type underwater glider for virtual mooring and field experiment[J]. International Journal of Offshore and Polar Engineering, 2009, 19(1): 66-70.
[3] 朱义东. 圆碟形水下滑翔机运动与坐底性能分析 [D]. 大连: 大连海事大学, 2017.
[4] 赵宝强. 碟形水下滑翔机动态稳定性建模仿真研究[J]. 舰船科学技术, 2016, 38(13): 82-86.
ZHAO Baoqiang. Study of modeling and simulation of disc-underwater glider dynamic stability[J]. Ship Science and Technology, 2016, 38(13): 82-86.
[5] 沈聪. 圆碟形水下滑翔机运动性能与空抛入水研究 [D]. 大连: 大连海事大学, 2019.
[6] 周晗. 圆碟形水下滑翔机运动特性研究 [D]. 大连: 大连海事大学 2021.
[7] 张凡. 碟形水下滑翔机结构稳定性与强度研究 [D]. 大连: 大连海事大学, 2017.
[8] 甄春博, 王强, 王晓旭, 等. 基于参数化方法的圆碟形水下滑翔机结构轻量化设计[J]. 机械设计与制造, 2021(4): 231-234+239.
[9] 王峰. 圆碟形水下滑翔机耐压壳结构优化与装配偏差计算及外形减阻分析 [D]. 大连: 大连海事大学, 2020.
[10] 熊仲营, 刘越尧, 陶品华, 等. 圆碟形水下滑翔机耐压壳体的优化设计[J]. 舰船科学技术, 2024, 46(7): 65-73.
XIONG Zhongying, LIU Yueyao, TAO Pinhua, et al. Optimized design of pressure hull of disk-shaped underwater glilder[J]. Ship Science and Technology, 2024, 46(7): 65-73.
[11] 于鹏垚, 沈聪, 王天霖, 等. 圆碟形水下滑翔机外形设计研究[J]. 中国造船, 2018, 59(4): 42-50.
YU Pengyao, SHEN Cong, WANG Tianlin, et al. Research on shape design of disk type of underwater glider[J]. Ship Building of China, 2018, 59(4): 42-50.
[12] 王浩亮. 圆碟形水下滑翔机集群路径规划与协同控制 [D]. 大连: 大连海事大学, 2021.
[13] 王浩亮, 孙定翔, 马小轩, 等. 基于双层协调体系的多圆碟形AUG路径规划[J]. 哈尔滨工程大学学报, 2023, 44(5): 783-792.
[14] 卢丽宇. 圆碟形水下滑翔机集群路径规划与协同路径跟踪控制 [D]. 大连: 大连海事大学, 2023.