针对具有圆形截面的结构物易引发涡激运动这一问题,应用CFD方法模拟不同折合速度条件下带有运动抑制装置的圆筒型FPSO的涡激运动响应。分析结果发现,在折合速度为5~6时,圆筒型FPSO的涡激运动频率与纵荡、横荡运动的固有频率相近,出现了显著的涡激锁定现象,运动响应增大;当折合速度超过锁定区范围后,涡激运动响应幅值会有明显的减小,且横向的运动响应谱存在2个频率响应。对比不同流速下浮体在横向及顺流向的运动结果发现,带有运动抑制装置的圆筒型FPSO涡激运动的轨迹为类“8”字型。
Aiming at the problem that the structure with circular cross section is easy to cause vortex-induced motion, CFD method is used to simulate the vortex-induced motion response of cylindrical FPSO with motion suppression device under different reduced velocity conditions. The analysis results show that when the reduced velocity Ur =5 ~ 6, the vortex-induced motion frequency of the cylindrical FPSO is close to the natural frequency of surge and sway motion, and there is a significant vortex-induced locking phenomenon, and the motion response increases. When the reduced velocity exceeds the lock-in range, the amplitude of the vortex-induced motion response will be significantly reduced, and there are two frequency responses in the motion response spectrum perpendicular to the flow direction. Comparing the motion results of the floating body in the direction perpendicular to the flow direction and the downstream direction at different flow velocities, it is found that the trajectory of the vortex-induced motion of the cylindrical FPSO with the motion suppression device is a ' 8 ' shaped.
2024,46(24): 109-114 收稿日期:2023-7-17
DOI:10.3404/j.issn.1672-7649.2024.24.019
分类号:U661
基金项目:国家自然科学基金资助项目(52001230);天津市自然科学基金资助项目(21JCQNJC00330);工信部高技术船舶项目(CJ08N20)
作者简介:张若瑜(1981-),女,博士,副教授,研究方向为船舶与海洋工程
参考文献:
[1] 曲志森. 新型FDPSO减动结构开发及运动响应分析[D]. 天津: 天津大学, 2018.
[2] 翟佳伟, 唐友刚, 李焱, 等. 风浪流中涡激共振对Spar型浮式风机运动响应的影响[J]. 海洋工程, 2018, 36(4): 39-49.
ZHAI J W, TANG Y G, LI Y, et al. Effect of vortex-induced resonance on motion response of Spar-type FOWT under wind current and wave[J]. The Ocean Engineering, 2018, 36(4): 39-49.
[3] LI W, TANG Y G, LIU L Q, et al. Internal resonances for heave, roll and pitch modes of a spar platform considering wave and vortex-induced loads in the main roll resonance[J]. China Ocean Engineering, 2017, 31(4): 408-417.
[4] SEUNG J K, DUSAN S, RICARDO M A, et al. Numerical simulation of vortex-induced motion of a deep-draft paired-column semi-submersible offshore platform[J]. Ocean Engineering, 2018, 149(1): 291–304.
[5] 裴浩, 支鹏飞, 张新曙, 等. 圆立柱张力腿平台涡激运动特性数值研究[J]. 水动力学研究与进展A辑, 2022, 37(4): 520-528.
PEI H, ZHI P F, ZHANG X S, et al. Numerical investigation on characteristics of vortex-induced motion of tension leg platform with circular columns[J]. Journal of Hydrodynamics, 2022, 37(4): 520-528.
[6] JIN R J, SHEN W J, CONG L F, et al. Experimental investigation of the vortex-induced motion of tension leg platform system with suppression system under current[J]. Ocean Engineering, 2022, 246: 73-86.
[7] 谢康迪. 浮筒涡激运动数值模拟分析[D]. 上海: 上海交通大学, 2019.
[8] 李刚, 李达, 王朝阳, 等. 圆筒型FPSO在波浪中运动响应特性研究[J]. 船舶, 2022, 33(2): 22-28.
LI G, LI D, WANG Z Y, et al. Research on motion response characteristics of cylindrical fpso in waves[J]. Ship & Boat, 2022, 33(2): 22-28.
[9] 黄佳, 王忠畅, 赵战华. 圆筒形FWPSO水动力性能模型试验研究[J]. 海洋工程, 2017, 35(6): 119-124.
HUANG J, WANG Z C, ZHAO Z H. Model experimental research on hydrodynamic performance of cylindrical floating workover production storage offloading (FWPSO)[J]. The Ocean Engineering, 2017, 35(6): 119-124.
[10] 黎国彦, 李焱, 唐友刚, 等. 运动抑制装置对圆筒型浮式平台运动响应的影响[J]. 船海工程. 2023, 52(6): 128–131+136.
LI G Y, LI Y, TANG Y G, et al. Influence of the motion suppression device on the motion responses of the cylindrical FPSO[J]. Ship & Ocean Engineering, 2023, 52(6): 128–131+136.
[11] 赵治民, 李焱, 唐友刚, 等. 圆筒型FPSO优化设计与水动力性能分析[J]. 海洋工程, 2020, 38(1): 11-19+29.
ZHAO Z M, LI Y, TANG Y G, et al. Optimization design and hydrodynamic performance analysis of cylindrical FPSO[J]. The Ocean Engineering, 2020, 38(1): 11-19+29.
[12] 袁洪涛, 唐友刚, 李焱, 等. 新型FDPSO运动抑制系统阻尼特性试验研究[J]. 舰船科学技术, 2022, 44(20): 92-96.
YUAN H T, TANG Y G, LI Y, et al. Experimental study on the damping performance of a new-type FDPSO with anti-motion structure[J]. Ship Science and Technology, 2022, 44(20): 92-96.