采用双向流固耦合(Fluid Structure Interaction,FSI)的CFD-FEA数值方法,对规则波工况中的充气式承重浮桥的运动响应和垂直弯矩进行预报。在FSI算法中,从CFD模型获得的波浪载荷与从FEA模型获得的浮桥运动和结构变形在迭代交错的双向耦合机制中相互交换。研究结果表明,在规则波工况中,充气式承重浮桥纵摇运动的幅值随着波浪周期的递增表现先增加后减小的趋势;在规则波工况中,垂荡运动的幅值随着波浪周期的递增表现增大的趋势。充气式承重浮桥中剖面的垂直弯矩随波浪周期的增加呈先增大后减小的趋势。通过与充气式承重浮桥的联合仿真,验证了所开发耦合方法能够模拟波浪载荷下浮桥运动响应和结构变形范围内的大部分物理特性,推动了浮桥设计理论的发展。
The numerical CFD-FEA method with a two-way fluid structure interaction (FSI) is used to predict the inflatabie load-bearing floating bridge motion responses and structural deformation in regular wave conditions. In the FSI algorithm, the wave loads obtained from the CFD model are exchanged with the floating bridge motions and structure deformations obtained from the FEA model in an iteratively interleaved two-way coupling mechanism. The results show that, In regular wave conditions, the amplitude of the pitch motion of the inflatable load- bearing floating bridge shows a trend of first increasing and then decreasing with the increase of wave period. In regular wave conditions, the amplitude of heave motion shows an increasing trend with the increase of wave period. The vertical bending moment of the mid section of the inflatable load-bearing floating bridge shows a trend of first increasing and then decreasing with the increase of wave period. Through co-simulation with the inflatable load-bearing floating bridge, it is verified that the developed coupling method can simulate most of the physical characteristics of motion response and structural deformation of floating bridges under wave loads, promoting the development of floating bridge design theory.
2024,46(24): 115-120 收稿日期:2024-1-22
DOI:10.3404/j.issn.1672-7649.2024.24.020
分类号:P751
基金项目:华东勘测设计研究院基金资助项目(ZKY2023-HCDK-03-06)
作者简介:赵建成(1998-),男,硕士,工程师,研究方向为船舶与海洋工程水动力
参考文献:
[1] 丛文超, 侯明君, 王志东, 等. 岛礁地形影响下多体浮桥的水动力性能研究[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 689–696.
CONG W C, HOU M J, WANG Z D, et al. Hydrodynamic performance study of multi-body floating bridges under the influence of island and reef topography [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31 (5): 689–696.
[2] 黄鑫伟, 程志友, 胡健, 等. 基于RANS/LES混合方法的近岸水域波浪增阻影响的数值模拟[J]. 船舶工程, 2023, 45(1): 63-70+83.
HUANG X W, CHENG Z Y, HU J, et al. Numerical simulation of wave induced drag in nearshore waters based on RANS/LES hybrid method[J]. Ship Engineering, 2023, 45(1): 63-70+83.
[3] LIU X, CAI Z, SUN Z, et al. Study on long-term distribution and short-term characteristics of the waves near islands and reefs in the SCS based on observation[J]. Ocean Engineering, 2020, 218: 108171.
[4] SUN Z, TIAN C, DING J, et al. Hydroelastic analysis of VLFS near islands in typhoon wave environment [J]. Journal of Ship Mechanics, 2020, 24(8): 1024-1025.
[5] SEIF M S, INOUE Y. Dynamic analysis of floating bridges[J]. Marine Structures, 1998, 11(1–2): 29-46.
[6] IKEGAMI K, KUMAMOTO N, INOUE K, et al. Elastic response of floating bridge in waves [C]// Proceedings of OMAE01 20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro Brazil, 2001.
[7] CHEN X, WU Y, CUI W, et al. Review of hydroelasticity theories for global response of marine structures[J]. Ocean Engineering, 2006, 33(3): 439-457.
[8] 郭飞, 孙永岗, 徐进, 等. 基于多浮体水弹性方法的海上浮桥典型工程应用研究[C]//第26届全国结构工程学术会议论文集, 2017.
GUO F, SUN Y G, XU J, et al. Research on Typical Engineering Applications of Offshore Floating Bridges Based on Multi buoyant Hydroelastic Method [C]//Proceedings of the 26th National Conference on Structural Engineering, 2017.
[9] 何良德, 黄挺, 李俊龙, 等. 马尔代夫海域大型浮体水动力响应特性及减摇措施[J/OL]. 河海大学学报(自然科学版): 1–12[2023-09-01]. http://kns.cnki.net/kcms/detail/32.1117.tv.20220801.1625.008.html.
HE L D, HUANG T, LI J L, et al. Hydrodynamic response characteristics and anti roll measures of large floating bodies in the Maldives [J/OL]. Journal of Hohai University (Natural Science Edition): 1–12 [2023-09-01]. http://kns.cnki.net/kcms/detail/32.1117.tv.20220801.1625.008.html.
[10] 孙建群, 姜鹏宇, 宋春辉, 等. 规则波作用下多模块浮桥的水动力性能试验[J]. 哈尔滨工程大学学报, 2019, 40(1): 162-167.
SUN J Q, JIANG P Y, SONG C H, et al. Hydrodynamic performance tests of multi module floating bridges under regular wave action[J]. Journal of Harbin Engineering University, 2019, 40(1): 162-167.
[11] BATHE K J. Finite element procedures [M]. Finite Element Procedures, 2006.