随着新一轮能源革命的进行,海上漂浮式光伏成为新能源发展的新战场。采用球形离散元法构建海上漂浮式薄膜光伏电站系统的数值模型,并在不同波高、周期和结构直径条件下进行水动力特性的数值计算。研究结果验证采用的数值方法分析海上漂浮式薄膜光伏电站系统水动力特性的适用性。结果表明,随着波高和结构直径增大,位移、波浪力和系泊力三者逐渐增大。随着周期增大,水平位移减小,垂直位移增大,水平波浪力先增大再减小,垂直波浪力在波高H=4.0 m和H=5.0 m时减小,在波高H=5.0 m和H=5.5 m时增大,迎浪侧系泊力先增大再减小,背浪侧系泊力先增大后减小再增大。在各种工况下,水平波浪力大于垂直波浪力,迎浪测系泊力大于背浪侧系泊力。
With the new round of energy revolution, offshore FPV becomes a new battlefield for new energy development. A numerical model of the offshore thin film FPV system is constructed using the spherical discrete element method, and the numerical calculation of the hydrodynamic characteristics is carried out under the conditions of different wave heights, periods and structure diameters. The results validate the applicability of the numerical method for analysing the hydrodynamic characteristics of offshore thin film FPV systems. The results show that with the increase of wave height and structure diameter, the displacement, wave force and mooring force gradually increase; with the increase of period, the horizontal displacement decreases, the vertical displacement increases, the horizontal wave force increases and then decreases, the vertical wave force decreases at wave heights of H=4.0 m and H=5.0 m, and then increases at wave heights of H=5.0 m and H=5.5 m, and the mooring force at the facing side of the wave firstly increases and then decreases and that at the back of the wave firstly increases and then decreases and then decreases. In all working conditions, the horizontal wave force is greater than the vertical wave force, and the wave measurement mooring force is greater than the back wave side mooring force.
2024,46(24): 121-128 收稿日期:2023-11-24
DOI:10.3404/j.issn.1672-7649.2024.24.021
分类号:TM615
基金项目:辽宁省自然科学基金计划面上项目(2023-MS-112)
作者简介:成小飞(1985-),男,博士,副教授,研究方向为海洋环境与结构物相互作用
参考文献:
[1] IRENA. Renewable capacity statistics 2022[M]. Abu Dhabi: The International Renewable Energy Agency, 2022.
[2] YAN C, SHI W, HAN X, et al. Assessing the dynamic behavior of multiconnected offshore floating photovoltaic systems under combined wave-wind loads: a comprehensive numerical analysis[J]. Sustainable Horizons, 2023, 8, 100072.
[3] MAGKOURIS A, BELIBASSAKIS K, RUSU E. Hydrodynamic analysis of twin-hull structures supporting floating PV systems in offshore and coastal regions[J]. Energies, 2021, 14(18): 1–19.
[4] ZHU H, JI S. Discrete element simulations of ice load and mooring force on moored structure in level ice[J]. Computer Modeling in Engineering & Sciences, 2022(7): 5–21.
[5] 翟必垚, 刘璐, 张宝森, 等. 基于离散元方法与水动力学耦合的河冰动力学模型[J]. 水利学报, 2020, 51(5): 617-630.
[6] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720-1739.
[7] 王祥, 胡冰, 刘璐, 等. 冰区航行船舶冰阻力及六自由度运动响应的离散元分析[J]. 工程力学, 2023, 40(4): 243-256.
[8] JI S, DI S, LIU S. Analysis of ice load on conical structure with discrete element method[J]. Engineering Computations, 2015, 32(4), 1121–1134.
[9] JI S, DI S, LONG X. DEM simulation of uniaxial compressive and flexural strength of sea ice: Parametric study[J]. Journal of Engineering Mechanics, 2017, 143(1), C4016010.
[10] 邹志利. 水波理论及其应用[M]. 北京: 科学出版社, 2005.
[11] BREBBIA C A, WALKER S. Dynamic analysis of offshore structure[M]. London: Newnes-Butterworths, 1979.
[12] 郑艳娜. 波浪与浮式结构物相互作用的研究[D]. 大连:大连理工大学, 2006.
[13] 黄小华, 郭根喜, 胡昱, 等. 圆形网箱浮架系统的受力特性研究[J]. 南方水产, 2009, 5(4): 36-40.