基于势流理论和叶素动量理论,设计一种搭载NREL 5 MW风力机的V型半潜式浮式平台,探究模型尺度变化对平台性能的影响。通过气动-水动-系泊分析程序FAST2AQWA(F2A)完成V型浮式风力机的时域全耦合模拟,探究不同工况的流载荷对平台运动及系泊张力的影响。结果表明,流速和流载荷入射角度的变化对运动响应和系泊受力的影响十分显著。
Based on potential flow theory and leaf element momentum theory, a V-shaped floating semi-submersible platform with NREL 5 MW wind turbine is designed. A fully coupled time-domain simulation of the V-shaped floating wind turbine was completed by using the Aero-Hydro-mooring analysis program FAST2AQWA (F2A), and the influence of current load on platform motion and mooring tension under different conditions was explored. The results show that the velocity and incident angle of current load have significant effects on platform motion response and mooring tension force.
2024,46(24): 134-142 收稿日期:2023-9-5
DOI:10.3404/j.issn.1672-7649.2024.24.023
分类号:U661.32
基金项目:扬州科技局绿扬金凤项目(YZLYJFJH2021CX021)
作者简介:沈勇(1994-),男,硕士,助理工程师,研究方向为浮式风机平台设计、浮式防波堤水动力分析
参考文献:
[1] BALTROP N. Multiple unit floating offshore windfarm[C]//In Proceedings of a BWEA/DTI Seminar GreatBritain: Prospects of Offshore Wind Energy: The stateof the Art and Future Opportunities, 1993.
[2] RODDIER D, CERMELLI C, AUBAULT A, et al. WindFloat: A floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033104.
[3] LUAN C, GAO Z, MOAN T. Design and analysis of a braceless steel 5MW semi-submersible wind turbine[C]//International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2016.
[4] CAO Q, XIAO L, GUO X, et al. Second-order responses of a conceptual semi-submersible 10 MW wind turbine using full quadratic transfer functions[J]. Renewable Energy, 2020, 153: 653-668.
[5] UZUNOGLU E, SOARES C G. Hydrodynamic design of a free-float capable tension leg platform for a 10 MW wind turbine[J]. Ocean Engineering, 2020, 197: 106888.
[6] 刘周, 樊天慧, 陈超核, 等. 3种典型半潜式浮式风机基础水动力性能比较[J]. 中国海洋平台, 2021, 36(2): 1–10.
LIU Z, FAN T H, CHEN C H, et al. Comparison on hydrodynamic performance of three kinds of typical semi-submersible floating foundation of offshore wind turbine[J]. China Offshore Platform, 2021, 36(2): 1–10.
[7] 卢泽辉. 基于重叠网格方法的浮式风机系统气-水动力性能CFD分析[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[8] 赵书晨. 新型Spar浮式风机气动-水动-系泊全耦合数值分析[D]. 大连: 大连理工大学, 2021.
[9] 陈嘉豪, 刘格梁, 胡志强. 海上浮式风机时域耦合程序原理及其验证[J]. 上海交通大学学报, 2019, 53(12): 10.
CHEN J H, LIU G L, HU Z Q. Development and validation of a time-domain coupling simulation code for floating offshore wind turbines[J]. Journal of Shanghai Jiao Tong University, 2019, 53(12): 10.
[10] WU Q, ZHANG B J . Calculation methods of added resistance and ship motion response based on potential flow and viscous flow theory[J]. China Ocean Engineering, 2022, 36: 488–499.
[11] YAO X L, ZHANG A M, et al. A numerical investigation of bubble dynamics based on the potential-flow theory[J]. Journal of Marine Science & Application, 2006(4): 14–21.
[12] LUAN C , ZHEN G , MOAN T. Design and analysis of a braceless steel 5-MW semi-submersible wind turbine[C]// Asme International Conference on Ocean, 2016.
[13] 中国船级社. 海上移动平台入级规范[S]. 北京: 人民交通出版社, 2012.
[14] YANG Y , BASHIR M , MICHAILIDES C , et al. Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable Energy, 2020, 161: 606–625.
[15] KIM H C, KIM M H . Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results[J]. 2016.
[16] International standard for wind turbines—Part 3: Design requirements for offshore wind turbine: IEC 61400-3[S]. 2009.