运输装置底部的搁置脚与滚装船甲板之间存在着复杂的非线性接触关系,不能简单地将搁置脚载荷视作均布载荷来处理。为探讨在搁置脚载荷作用下船舶甲板结构的接触压力与应力分布,以某钢质甲板结构为研究对象,采用Abaqus对其进行非线性接触数值计算,通过实尺度搁置脚载荷甲板强度实验,对搁置脚不同位置下甲板模型的接触压力、甲板板应力、纵骨应力进行分析,并将实验结果与仿真结果进行对比分析,验证搁置脚与甲板的接触压力分布规律,并在此基础上提出一种针对甲板板的简化计算方法,将复杂的非线性接触计算转变为较为简单的线弹性计算。结果表明,接触压力主要集中在搁置脚前端和横梁附近,以强横梁为代表的强构件是主要承载构件,甲板板高应力区域主要集中在搁置脚底部前端以及横梁附近,实验结果与数值计算结果吻合较好。本文计算模型具有较高的准确性,简化计算方法对滚装船甲板设计及强度计算具有较好的实用性。
Complex contact takes place between the undercarriage of equipment and the deck on Ro-Ro ship, so the undercarriage load cannot be simply treated as a uniformly distributed load. In order to investigate the contact pressure and stress distribution between a deck and undercarriage, a steel deck structure is taken as the research object. ABAQUS is used for nonlinear contact numerical calculation from many aspects. Then, the contact pressure, deck plate stress and longitudinal bone stress of the deck model at different positions of the undercarriage are analyzed through the experiment, and the experimental results are compared with the simulation results to verify the distribution law of the contact pressure between the undercarriage and the deck. On this basis, a simplified calculation method for deck plate is proposed, which transforms the complex nonlinear contact calculation into a relatively simple linear elastic calculation. The results show that the contact pressure is mainly concentrated in the front end of the undercarriage and near the web beam, the strong member represented by the strong beam is the main bearing member, and the high stress area of the deck plate is mainly concentrated in the front end of the bottom of the undercarriage and near the beam. The proposed calculation model has good accuracy and the simplified calculation method has good practicability for the deck design and strength calculation of Ro-Ro ships.
2025,47(1): 1-7 收稿日期:2024-2-18
DOI:10.3404/j.issn.1672-7649.2025.01.001
分类号:U663.6
基金项目:国家自然科学基金资助项目(U2241266)
作者简介:蒋嘉奇(1997-),男,助理实验师,研究方向为结构力学试验技术
参考文献:
[1] 中国船级社. 钢制海船入籍规范[S]. 2012.
[2] GRACIANO C A, EDLUND B. Nonlinear FE analysis of longitudinally stiffened girder webs under patch loading[J]. Journal of Constructional Steel Research, 2002: 1231-1245.
[3] SEBASTIAN W M, WEBSTER T, KENNEDY C, et al. Profiled metal plate – cork mat loading systems on cellular FRP bridge decks to reproduce tyre-to-deck contact pressure distributions[J]. Construction & Building Materials, 2013(49): 1064-1082.
[4] CHACÓN R, MIRAMBELL E, REAL E. Influence of flange strength on transversally stiffened girders subjected to patch loading[J]. Journal of Constructional Steel Research, 2014, 97: 39-47.
[5] MARKOVIC N, KOVACEVIC S. Influence of patch load length on plate girders. Part I: experimental research[J]. Journal of Constructional Steel Research, 2019, 157: 207-28.
[6] ZHU L, WEI C, PAUL A F, et al. Design method for steel deck plates under quasi-static patch loads with allowable plastic deformations[J]. Marine Structures, 2020, 71: 102702.
[7] 王智慧. 波纹夹层板轮印载荷分配与极限承载能力研究[D]. 武汉: 华中科技大学, 2015.
[8] 曾鸣, 王福花, 王德禹. 气垫船搁置脚与车辆甲板之间的非线性接触分析[J]. 中国舰船研究, 2006(3): 58-61.
ZENG M, WANG F H, WANG D Y. The non-linear analysis of the contact problem between the hovercraft cushion and the vehicle decks[J]. Chinese Journal of Ship Research, 2006(3): 58-61.
[9] 曾鸣. 登陆舰车辆甲板结构设计和强度校核规范建立的研究[D]. 上海: 上海交通大学, 2007.
[10] 郑朝斌, 徐志亭, 王福花, 等. 承受搁置脚载荷的舰船甲板纵骨设计方法[J]. 舰船科学技术, 2015, 37(11): 44-48.
ZHENG C B, XU Z T, WANG F H, et al. Design method for deck longitudinal of warship carrying undercarriage load[J]. Ship Science and Technology, 2015, 37(11): 44-48.
[11] 郑朝斌. 搁置脚载荷作用下的甲板结构分析[D]. 上海: 上海交通大学, 2016.
[12] 熊群飞, 徐志亭, 王福花, 等. 搁置脚载荷作用下的甲板压力分布特征实验和数值分析[J]. 中国舰船研究, 2018, 13(5): 10-17.
XIONG Q F, XU Z T, WANG F H, et al. Experiment and numerical analyses for pressure distribution on deck under undercarriage load[J]. Chinese Journal of Ship Research, 2018, 13(5): 10-17.