近年来全球变暖的加剧使得北极航道的开放更具可行性,为分析极地船舶航行过程中的冰载荷及船体结构响应特性,本文针对船体舷侧结构与浮冰场多次碰撞的场景开展数值仿真研究。参考现阶段浮冰观测统计经验,建立船体舷侧结构-浮冰场相互作用有限元数值模型,在不同碰撞角度与不同浮冰密集度下开展仿真计算,分析船冰连续多次碰撞过程中碰撞力、能量及响应数据,研究碰撞角度和浮冰场密集度对浮冰载荷及船体舷侧结构响应特性的影响规律。结果表明,船冰多次相互作用下的结构响应规律与船冰单次作用存在一定差异,碰撞角度与浮冰场密集度参数对船冰碰撞力与船体舷侧结构响应特征影响呈现出一定的规律。本文研究内容对极地航行船舶舷侧结构的安全性设计具有参考价值。
The intensification of global warming in recent years has made the opening of Arctic shipping lanes more feasible. In order to analyze the ice load and hull structure response characteristics during polar ship navigation, this paper carries out a numerical simulation study for the scenario of multiple collisions between the ship's outboard hull structure and the ice floe field. With reference to the statistical experience of ice floe observation at the present stage, a finite element numerical model of hull side structure-ice floe field interaction is established, and simulations are carried out at different collision angles and different ice floe densities to analyze the collision force, energy, and response data in the process of consecutive collisions of the ship and the ice, and to study the effects of collision angle and ice floe field densities on the ice floe loads and the response characteristics of the ship's hull side structure. The results show that the structural response law under multiple ship-ice interactions is different from that of single ship-ice interactions, and the impact of collision angle and ice floe field density parameters on the ship-ice collision force and hull outboard structural response characteristics shows a certain pattern. The research content of this paper has reference value for the safety design of the side structure of polar navigation ship.
2025,47(1): 8-13 收稿日期:2024-3-4
DOI:10.3404/j.issn.1672-7649.2025.01.002
分类号:U663.2
基金项目:上海市科技创新行动计划社会发展科技攻关项目(22DZ1204500)
作者简介:姜河蓉(1978-),女,硕士,副研究员,研究方向为极地船舶
参考文献:
[1] 贾桂德, 石午虹. 对新形势下中国参与北极事务的思考[J]. 国际展望, 2014, 6(4): 5-28+150.
JIA G, SHI W H. Reflections on China's participation in Arctic Affairs under the new situation[J]. Global Review, 2014, 6(4): 5-28+150.
[2] 余梦珺. 北极西北航道自然环境风险评估与应急救援问题研究[D]. 长沙: 国防科技大学, 2021.
[3] WANG B, YU H C, BASU R, et al. Structural response of cargo containment systems in LNG carriers under Ice Loads[C]//Proceedings of ICETECH 2008 : the 8. International Conference and Exhibition on Performance of Ships and Structures in Ice, Canada, 2008.
[4] JIA Z, RINGSBERG J, JIA J. Numerical analysis of nonlinear dynamic structural behaviour of ice-loaded side-shell structures[J]. International Journal of Steel Structures, 2009, 9(3): 219-230.
[5] GENTLEMAN J F, WHITMORE G A, MARC MOORE, et al. Iceberg paths and collision risks for fixed marine structures[J]. Canadian Journal of Statistics, 2010, 13(2): 83-87.
[6] SAZIDY M, DALEY C, COLBOURNE B, et al. Effect of ship speed on level ice edge breaking[C]//Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. California, USA, 2014.
[7] 张健, 陈聪, 张淼溶, 等. 船舶与冰排碰撞结构响应研究[J]. 船舶工程, 2014, 36(6): 24-26+38.
ZHANG J, CHEN C, ZHANG M R , et al. Research on structure dynamic response in ship-ice floe collision [J]. Ship Engineering, 2014, 36(6): 24-26+38.
[8] 刘昆, 王自力, 张延昌, 等. 基于全耦合技术的船体结构碰撞性能研究[J]. 船舶力学, 2015(5): 574-581.
LIU K, WANG Z L, ZHANG Y C, et al. Collision behavior of structural analysis in ship collisions based on full-coupling technology[J]. Tournal of Ship Mechanics, 2015(5): 574-581.
[9] 刘少康, 李中扬, 樊红元, 等. 船艏冰刀对船冰碰撞时结构动力响应影响分析[J]. 船海工程, 2023, 52(1): 41-45.
LIU S K, LI Z Y, FAN H Y, et al. Analysis on the influence of bow ice knife upon structural dynamic response under ship-ice collision[J]. Ship & Ocean Engineering, 2023, 52(1): 41-45.
[10] 秦飞, 陆苏超. 基于内聚力接触法的船舷侧-平整冰相互作用数值模拟[J]. 船舶工程, 2023, 45(3): 60-66.
QIN F, LU S C. Numerical simulation of interaction between ship broadside and flat ice based on cohesive surface interaction method[J]. Ship Engineering, 2023, 45(3): 60-66.
[11] KOTISALO K, KUJALA P. Ice load measurements onboard MT Uikku during the ARCDEV Voyage[C] // The 15th International Conference on Port and Ocean Engineering under Arctic Conditions. Helsinki, Finland, 1999.
[12] LEE S G, LEE J S, BAEK T H. Structural safety assessment in membrane-type CCS in LNGC under iceberg collisions[C] // International Conference on Ship & Offshore Technology Ice Class Ships 09. Busan, Korea, 2009.
[13] 赵杰臣, 周翔, 孙晓宇, 等. 北极遥感海冰密集度数据的比较和评估[J]. 遥感学报, 2017, 21(3): 351-364.
ZHAO J C, ZHOU X, SUN X Y, et al. The inter comparison and assessment of satellite sea-ice concentration datasets from the arctic[J]. Journal of Remote Sensing, 2017, 21(3): 351-364.