随着船舶大型化的发展,反映船舶机动性的回转性能变得越来越重要。在船舶设计中,往往通过加装呆木提高船舶的航向稳定性,但是却对回转性能有着不利影响。在商业软件STAR-CCM+上采用体积力法、重叠网格技术及六自由度运动模型,开展了某集装箱船的回转运动数值模拟。加装呆木前后船模回转过程中失速和横倾角的变化进行对比,分析了回转性能变化的原因。结果显示,数值预报的各项回转运动的特征值与试验的误差在10%以内,证明本文采用的计算方法有效,可以为呆木的前期设计提供可靠参考。
With the development of large-scale ships, the turning performance reflecting the maneuverability of ships becomes more and more important. In the process of ship design, the course keeping stability of the ship is often improved by adding deadwood, but it has an adverse effect on the turning performance. The numerical simulation of the turning motion of a container ship is carried out by using the body force method, the overlapping grid technology and the 6-DOF motion model on the STAR-CCM+. The changes of speed loss and yaw port rate during the motion of the ship model after installing the deadwood are compared, and the reasons for the change of the turning performance are analyzed. The results show that the errors between the characteristic values of the turning motions predicted by the numerical calculation and the values of experiments are within 15%, which proves that the calculation method adopted in this paper is effective and can provide a reliable reference for the early design of a deadwood.
2025,47(1): 43-48 收稿日期:2024-1-2
DOI:10.3404/j.issn.1672-7649.2025.01.008
分类号:U661.33
作者简介:郝昊(1992-),男,硕士,助理研究员,研究方向为船舶与海洋结构物
参考文献:
[1] 王建华, 万德成. 船舶操纵运动CFD数值模拟研究进展[J]. 哈尔滨工程大学学报, 2018, 39(5): 813-824.
WANG J H, WAN D C. CFD simulations of ship maneuvering motion[J]. Journal of HARBIN ENGINEERING UNIVERSITY, 2018, 39(5): 813-824.
[2] 王慧婷, 毕毅. 基于体积力法的全附体KCS型船模PMM运动数值模拟[J]. 中国舰船研究, 2016, 11(4): 29-37+66.
WANG H T, BI Y. Numerical simulation on planar motion mechanism of KCS ship model with a body-force propeller model[J]. Chinese Journal of Ship Research, 2016, 11(4): 29-37+66.
[3] 刘晗, 马宁, 邵闯, 等. 限宽水域中船舶平面运动机构试验及水动力导数数值模拟[J]. 上海交通大学学报, 2016, 50(1): 115-122.
LIU H, MA N, SHAO C, et al. Numerical simulation of planar motion mechanism test and hydrodynamic derivatives of ship in laterally restricted water[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1): 115-122.
[4] ISMAIL F, CARRICA PM, XING T, et al. Evaluation of linear and nonlinear convection schemes on multidimensional non -orthogonal grids with applications to KVLCC2 tanker[J]. International Journal for Numerical Methods in Fluids, 2010, 64(8): 850-886.
[5] 孙晨光, 王建华, 万德成. 基于重叠网格的船模停船操纵CFD数值模拟[J]. 中国舰船研究, 2019, 14(2): 8-14.
SUN C G , WANG J H , WAN D C. CFD numerical simulations of stopping maneuver of ship model using overset grid technology[J]. Chinese Journal of Ship Research, 2019, 14(2): 8-14.
[6] 吴召华, 陈作钢, 代燚, 等. 基于体积力法的船舶回转运动水动力数值研究[J]. 中国舰船研究, 2013, 8(4): 12-19.
WU Z H, CHEN Z G, DAI Y, et al. Numerical study of hydrodynamic force on ships in turning motion based on a body-force propeller model[J]. Chinese Journal of Ship Research, 2013, 8(4): 12-19.
[7] BROGLIA R, DUBBIOSO G, DURANTE D. Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configuration[J]. Ocean Engineering, 2015, 105: 275-286.
[8] MENTER F R, KUNTZ M, LANGTRY R B. Ten years of in-dustrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 625-632.
[9] BERBEROVI E, VAN HINSBERG N, JAKIRLIC S, et al. Drop impact onto a liquid layer of finite thickness: Dynam-ics of the cavity evolution[J]. Physical Review E, 2009, 79(3): 036306