为探索更节能减阻的船舶编队布局,分析修长系数对船舶编队布局减阻收益的影响,运用CFD数值模拟方法对修长系数3.42~5.41范围内的单船与船队的阻力性能进行研究,取得16.46%~21.87%的船舶编队减阻收益,证明了船舶编队航行节能减阻可行,且在修长系数3.42~5.41区间内不同的船舶编队减阻收益率具有明显差异,收益率最大差值达到5.23%。通过对收益率最低的船队布局进行微调,取得最大2.5%减阻收益率的提高。分析计算结果后得出结论:船队在单列纵队布局下,修长系数不同的船型所组成的船队在航行时,船舶编队的减阻效果存在明显差异。设计船舶编队布局时,不同修长系数的船队可通过调整各船纵向间距以取得更高减阻收益。
To explore more energy-efficient and drag-reducing ship formation layouts, the impact of the slenderness ratio on the drag reduction benefits of ship formation layouts was analyzed. The resistance performance of single ships and fleets within a slenderness ratio range of 3.42 to 5.41 was studied using CFD numerical simulation methods. Results showed a drag reduction benefit of 16.46% to 21.87% for ship formations, demonstrating the feasibility of energy-saving and drag-reduction in ship formation navigation. Moreover, within the 3.42 to 5.41 range, the drag reduction benefit rate of ship formations with different slenderness ratios showed significant variation, with a maximum difference in benefit rate of up to 5.23%. By fine-tuning the layout of the formation with the lowest benefit rate, an increase of up to 2.5% in the drag reduction benefit rate was achieved. Analysis of the calculation results concluded that there are clear differences in the drag reduction effects of ship formations composed of ships with different slenderness ratios when navigating in a single-column formation. When designing ship formation layouts, fleets with different slenderness ratios can achieve higher drag reduction benefits by adjusting the longitudinal spacing between ships.
2025,47(1): 65-69 收稿日期:2024-3-2
DOI:10.3404/j.issn.1672-7649.2025.01.012
分类号:U675.91
基金项目:辽宁省教育厅科学研究资助项目(LJKZ0726)
作者简介:陈佳树(1995-),男,硕士研究生,研究方向为船舶编队
参考文献:
[1] 郑洁, 柳存根, 林忠钦. 绿色船舶低碳发展趋势与应对策略[J]. 中国工程科学, 2020, 22(6): 94-102.
[2] 郝金凤, 强兆新, 石俊令, 等. 船舶设计节能减排技术策略[J]. 舰船科学技术, 2012, 34(9): 3-10.
HAO jin-feng, QIANG zhao-xin, SHI jun-ling. Research on response measures for ship emission reduction and energy saving[J]. Ship Science and Technology, 2012, 34(9): 3-10.(in Chinese)
[3] ALEXANDER R M. Hitching a lift hydrodynamically--in swimming, flying and cycling[J]. Journal of Biology 2004, 3(2): 7.
[4] RATTANASIRI P, WILSON P A, PHILLIPS A B. Numerical investigation of a fleet of towed AUVs[J]. Ocean Engineering, 2014, 80: 1-18.
[5] WEIHS D. The hydrodynamics of dolphin drafting[J]. J Biol, 2004, 3(2): 8.
[6] 许勇, 董文才. 波浪中多船近距离并行航行的水动力干扰研究[J]. 应用数学和力学, 2014, 35(4): 389-400.
[7] 张晨亮, 王建华, 万德成. 数值模拟船舶航行时船体间的相互作用[C]//2015年船舶水动力学学术会议, 2015.
[8] 郑义, 李坚波. 多船编队航行减阻可行性分析[J]. 舰船科学技术, 2020, 42(17): 12-16.
ZHENG yi, LI jian-bo. An investigation into the possibility of resistance reduction for multiple ships in given formations[J]. Ship Science and Technology, 2020, 42(17): 12-16.(in Chinese)
[9] 王欢欢. 基于CFD的渔船船队布局优化研究[D]. 舟山: 浙江海洋大学, 2021.
[10] 吴广怀, 陈徐均, 吴培德, 等. 三体船模型的阻力试验和数值预报[J]. 解放军理工大学学报(自然科学版), 2010, 11(4): 457-461.
[11] 段晔鑫, 刘源, 王毅, 等. 五体船侧体布局及兴波阻力优化[J]. 舰船科学技术, 2015, 37(3): 10-14.
WANG yi,TANG gui-lin. Research on the demihulls layout and wave resistance optimization of pentamaran[J]. Ship Science and Technology, 2015, 37(3): 10-14.(in Chinese)
[12] 周启学, 张伟, 毛奇志. 风浪流变化对船舶航行阻力的影响仿真分析[J]. 舰船科学技术, 2022, 44(12): 39-42.
ZHOU qi-xue, ZHANG wei, MAO qi-zhi, TANG gui-lin. Simulation analysis of the influence of wind wave current variation on ship navigation resistance[J]. Ship Science and Technology, 2022, 44(12): 39-42. (in Chinese)
[13] 农业农村部办公厅. 远洋渔船标准化船型参数系列表(2021年版)[S]. 农业农村部网站: 农业农村部网站, 2021.