为了使声学设备能够在水下正常工作,设计一种提供稳定姿态、在指定航速下达到要求深度的水下拖曳体搭载平台,并对其水动力学进行数值模拟。基于计算流体力学(Computational Fluid Mechanics, CFD)对水下拖曳体的3种砰击载荷工况进行数值模拟计算及实验验证,其中拖体初始位置分别为拖曳点距离水线以上半波高、拖曳点位于水线、拖曳点距离水线以下半波高。结果表明,数值模拟计算可以较为准确地监测各个区域的受力情况,相同条件下的试验与数值模拟受力结果对比验证了数值模拟结果的有效性,可为水下拖曳体的设计提供理论支撑和依据。
In order to enable acoustic equipment to function properly underwater, a waterborne towing body platform has been designed to provide stable attitude and achieve the required depth at a specified speed. Computational fluid mechanics (CFD) was employed to numerically simulate the hydrodynamics of the underwater towing body under three different slamming load conditions, with experimental validation. The initial positions of the towed body were set as: the towing point is above the waterline by half a wave height, the towing point is at the waterline, and the towing point is below the waterline by half a wave height. The results indicate that the numerical simulation can accurately monitor the force distribution in different regions. The comparison between the experimental and numerical simulation results under the same conditions validates the effectiveness of the numerical simulation. This study provides theoretical support and a basis for the design of underwater towing bodies.
2025,47(1): 83-88 收稿日期:2024-1-15
DOI:10.3404/j.issn.1672-7649.2025.01.015
分类号:U664.5
作者简介:易学平(1986-),男,硕士,高级工程师,研究方向为水下特种设备研制
参考文献:
[1] 曾东, 李朋飞. 基于CFD的水下拖曳体艉部流场仿真[J]. 中国舰船研究, 2014, 9(5): 44-48+59.
ZENG D, LI P F. CFD-based flow field simulation for the tail of underwater towed bodies[J]. Chinese Journal of Ship Research, 2014, 9(5): 44-48+59.
[2] 王飞, 涂卫民, 邓德衡, 等. 水下双阵列拖曳系统缆破断情况下的运动响应[J]. 上海交通大学学报, 2020, 54(2): 211-220.
WANG F, TU W M, DENG D H, etal. Dynamic research on dual array towed system for breaking situations[J]. Journal of Shanghai Jiaotong University, 2020, 54(2): 211-220.
[3] 王鲁军. 国外低频主动拖曳声呐发展现状和趋势[J]. 水下无人系统学报, 2018, 26(3): 193-199.
WANG L J. Current status and developing trend of low frequency active towed sonar abroad[J]. Journal of Unmanned Undersea Systems, 2018, 26(3): 193-199.
[4] 王飞, 丁伟, 邓德衡, 等. 水下多缆多体拖曳系统运动建模与模拟计算[J]. 上海交通大学学报, 2020, 54(5): 441-450.
WANG F, DING W, DENG D H, etal. Motion modeling and numerical simulation study of underwater multi-cable multi-body towed system[J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 441-450.
[5] XIAO D C, LIANG Y, YANG L L, et al. Multi-objective shape optimization of autonomous underwater vehicle by coupling CFD simulation with genetic algorithm[J]. Ocean Engineering, 2023, 286.
[6] XIAN Y Y, JIA M W, SHUN Y X. Dynamic analysis of underwater towed system under undulating motion mode of towed vehicle[J]. Applied Ocean Research, 2022, 121.
[7] 孙烨, 司先才, 裴建新, 等. 一种水下拖曳体的运动特性模拟研究[J]. 船舶工程, 2018, 40(S1): 330-334.
SUN Y, SI X C, PEI J X, etal. Simulation study of dynamic characteristics of one underwater towed vehicle[J]. Ship Engineering, 2018, 40(S1): 330-334.
[8] 杨显原, 吴家鸣. 基于嵌套网格技术对控制动作下水下拖曳系统水动力特性的分析[J]. 船舶力学, 2022, 26(7): 988-1001.
[9] 王福军. 计算流体动力学分析[M] 北京: 清华大学出版社, 2004.