以船舶隔热结构传热系数为研究对象,首先对数值模拟方法进行实验对比验证,随后对船舶隔热结构传热系数进行数值模拟,并进行对比分析。结果表明,相关标准中船舶隔热结构传热系数取值过于保守;船舶隔热结构空气层厚度和温差对船舶隔热结构传热系数影响较小,其值随空气层厚度增大而减小;当高、低温壁面一定时,其值随壁面温差的增大而增大,相同组成的船舶隔热结构用于舱壁时的传热系数略大于用于甲板时,以往文献的研究方法和结论存在不足之处,本文方法可以得到更准确的值。在实际设计中,可对船舶隔热结构进行数值模拟以得到更精确的传热系数和负荷计算结果,本文结果对船舶隔热结构传热系数的取值和数值模拟提供依据。
The paper takes the heat transfer coefficient of ship thermal insulation structure as the research object, firstly, the numerical simulation method was verified by experimental comparison, and then the heat transfer coefficient of ship thermal insulation structure was simulated numerically and analyzed comparatively. The results show that the value of heat transfer coefficient of ship thermal insulation structure in the relevant standards is too conservative; the thickness of the air layer of ship thermal insulation structure and the temperature difference have less influence on the heat transfer coefficient of ship thermal insulation structure, and its value decreases with the increase of the thickness of the air layer; the value increases with the increase of the temperature difference of the wall when the wall surface of the high and low temperatures is certain; the heat transfer coefficient of the same composition of the ship thermal insulation structure used for the bulkheads is slightly larger than that used for the deck, and the research methods and conclusions of the previous literature are insufficient. The research methods and conclusions of the previous literature are insufficient, and the method used in the thesis can get more accurate values. In the actual design, numerical simulation can be carried out to get more accurate heat transfer coefficient and load calculation results for ship thermal insulation structure. The results of the paper provide a basis for the value of heat transfer coefficient and numerical simulation of ship thermal insulation structure.
2025,47(1): 89-94 收稿日期:2024-3-21
DOI:10.3404/j.issn.1672-7649.2025.01.016
分类号:U664.5+1
作者简介:郭磊(1991-),男,硕士,工程师,研究方向为船舶空调冷藏通风设计
参考文献:
[1] IPCC. AR6 synthesis report: climate change 2023, summary for policymakers [R]. Interlaken: IPCC, 2023: 12-26.
[2] 李彦庆. 绿色低碳对海事工业发展的影响[J]. 船舶, 2023, 34(4): 1-18.
[3] 徐谦, 田正军, 吉春正, 等. 船舶被动式超低能耗上层建筑的设计构思[J]. 舰船科学技术, 2023, 44(18): 45-50.
XU Q, TIAN Z J, JI C Z, et al. Design conception of passive ultra-low power accommodation area in ship[J]. Ship Science and Technology, 2022, 44(18): 45-50.
[4] 樊新颖, 陈滨. 我国建筑热工设计参数确定方法依据追溯研究[J]. 建筑科学, 2017, 33(12): 159-164.
[5] 刘朝贤. 对建筑材料导热系数与蓄热系数修正问题的探讨[J]. 建筑科学, 2010, 26(10): 220-222.
[6] 张苏润, 张朝政. 冷热桥对装配式墙体传热特性影响研究[J]. 暖通空调, 2021, 51(S2): 416-421.
[7] 张甜甜. 空气夹层流动换热特性及在建筑围护结构中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[8] 郝潞岑, 刘元珍, 常晋. 保温混凝土空心剪力墙热工性能分析[J]. 混凝土, 2018(5): 147-151.
[9] 周俊男. 舰船舱室气流组织的数值与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[10] 柴婷, 毛佳炜, 陆懿东. 基于CFD模拟的船舶空调舱室热舒适性研究[J]. 船舶与海洋工程, 2015, 31(2): 37-42.
[11] 刘凤荣, 孟宪松, 张宇, 等. 船舶机舱内热环境数值模拟[J]. 大连海事大学学报, 2011, 37(2): 136-138.
[12] 李伟光, 李安邦, 徐新华, 等. 复杂船舶围壁传热系数取值探讨[J]. 中国舰船研究, 2014, 9(2): 78-83.
[13] GB/T 13409-1992, 船舶起居处所空气调节与通风设计参数和计算方法[S]. 1993.
[14] ISO 7547-2022, Ships and marine technology —Air-conditioning and ventilation of accommodation spaces and other enclosed compartments on board ships — Design conditions and basis of calculations[S]. 2022.
[15] 陶文铨. 数值传热学 [M]. 西安: 西安交通大学出版社, 1989.
[16] 陈豪, 郭磊, 华呈新. 船舶舱室置换通风系统的数值模拟和优化[J]. 船舶, 2019, 30(4): 1-6.
[17] 李思思, 周文和, 何炫, 等. 基于辐射原理狭窄垂直封闭空腔热阻强化措施的实验研究[J]. 辐射研究与辐射工艺学报, 2017, 35(2): 58-66.
[18] JC/T 564.1-2018, 纤维增强硅酸钙板. 第1部分: 无石棉硅酸钙板[S]. 重庆: 重庆大学出版社, 2008.
[19] 朱彤, 安青松, 刘晓华, 等. 传热学[M]. 北京: 中国建筑工业出版社, 2020.