管路系统是水下航行器与外界水环境重要的交互通道,工作过程中将产生流量和压力脉动,并激发振动和噪声,严重影响水下航行器的隐蔽性能。结合水下航行器管路系统中气容水舱特性和蓄能器吸收脉动原理,提出利用气容水舱消减脉动方法,研究不同工况下气容水舱消减流量脉动性能,结果表明:当气体压力由0.8 MPa增大至1.6 MPa,脉动率由14.96%降低至6.40%;脉动频率由2.0 Hz增大到6.0 Hz,脉动率由14.07%降低至10.69%;脉动幅值由1.0 m/s增大到4.0 m/s,脉动率由13.19%降低至10.64%。气容水舱可以有效消减进口管道的低频率小幅值流量脉动,实现系统平稳通流,满足管路系统消减流量脉动需求。
The pipeline system is an important interaction channel between the underwater vehicle and the external water environment, which will produce flow pulsation and pressure pulsation during the working process, then excite vibration and noise, and affect the concealment performance of the underwater vehicle. Combined with the characteristics of the gas-water cabin in the pipeline system of the underwater vehicle and the working principle of the accumulator, a method of reducing the flow pressure fluctuation of the gas-water cabin was proposed, and the effect of the flow reduction fluctuation of the gas-water cabin under different working conditions was researched. The results show that the pulsation rate decreases from 14.96% to 6.40% as the gas pressure increases from 0.8 MPa to 1.6 MPa, the pulsation rate decreases from 14.07% to 10.69% with the pulsation frequency increases from 2.0 Hz to 6.0 Hz, and the pulsation rate decreases from 13.19% to 10.64% with the pulsation amplitude increases from 1.0 m/s to 4.0 m/s. The gas-water cabin can effectively reduce the flow pulsation of the inlet pipeline with low frequency and small amplitude, realize the smooth flow of the system, and meet the needs of the pipeline system to reduce the flow pulsation.
2025,47(1): 95-101 收稿日期:2024-2-27
DOI:10.3404/j.issn.1672-7649.2025.01.017
分类号:U664.84
基金项目:国家自然科学基金资助项目(51905186);湖北省自然科学基金资助项目(2020CFB605)
作者简介:费銮(2000-),女,硕士研究生,研究方向为空化射流
参考文献:
[1] 钱江, 赵满, 姜祎. 钛合金海水管路上舰应用影响与关键技术问题[J]. 舰船科学技术, 2019, 41(9): 55-60.
QIAN J, ZHAO M, JIANG Y. Applicaion influence and key technology problems of titanium seawater pipelines used on navy ships[J]. Ship Science and Technology, 2019, 41(9): 55-60.
[2] 王晖晖. 管路系统流动特性及噪声研究[D]. 武汉: 华中科技大学, 2019.
[3] 李永涛, 杨波, 木合塔尔·克力木. 液压系统流体脉动抑制方法综述[J]. 机械工程学报, 2022, 58(16): 344-359.
[4] 瞿炜炜, 周连佺, 张楚, 等. 液压储能技术的研究现状及展望[J]. 液压与气动, 2022, 46(6): 93-100.
[5] 习毅, 李宝仁, 张迪嘉, 等. 串联囊式衰减器脉动抑制性能的高精度计算方法[J]. 液压与气动, 2023, 47(3): 100-107.
[6] JIAO Z, CHEN P, HUA Q, et al. Adaptive vibration active control of fluid pressure pulsations[J]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 2003, 217(I4): 311-318.
[7] 黎石, 王国志. 基于预压缩容腔的柱塞泵脉动研究[J]. 机床与液压, 2020, 48(5): 166-170.
LI S, WANG G Z. Research of ripple in piston pump based on pre-compression volume[J]. Machine Tool & Hydraulics, 2020, 48(5): 166-170.
[8] 商夏, 周华, 杨华勇. 液压系统流体脉动主动控制方法研究现状[J]. 机械工程学报, 2019, 55(24): 216-226.
SHANG X, ZHOU H, YANG H Y. Research status of active control of hydraulic fluid pulsation[J]. Journal of Mechanical Engineering, 2019, 55(24): 216-226.
[9] 董蒙, 栾希亭, 梁俊龙, 等. 气囊式蓄能器吸收脉动的动态特性分析[J]. 液压与气动, 2019(05): 109-116.
[10] 马海英, 张鹏, 郭志军. 高低压蓄能器在回转泵控液压系统中应用及仿真[J]. 液压与气动, 2021, 45(7): 83-87.
[11] 杨庆俊, 董日治, 罗小梅, 等. 弹簧式液压脉动衰减器特性研究[J]. 液压与气动, 2021, 45(9): 164-171.
[12] YOKOTA S, SOMADA H, YAMAGUCHI H. Study on an active accumulator - (active control of high-frequency pulsation of flow rate in hydraulic systems)[J]. Jsme International Journal Series B-Fluids and Thermal Engineering, 1996, 39(1): 119-124.
[13] MAMCIC S, BOGDEVICIUS M. Simulation of dynamic processes in hydraulic accumulators[J]. Transport, 2010, 25(2): 215-221.
[14] 杨帆, 邓斌. 采用集中参数法的柔性衬里扩张室压力脉动衰减器滤波特性研究[J]. 振动与冲击, 2018, 37(20): 216-221.
YANG F, DENG B. Pulsation attenuation characteristics study of an expansion chamber hydraulic suppressor with a compressible liner using a lumped parameter model[J]. Journal of Vibration and Shock, 2018, 37(20): 216-221.
[15] 袁军, 江杭, 方正艳, 等. 一种复合式广谱液压脉动衰减器的设计与分析[J]. 液压与气动, 2021, 45(12): 176-183.
[16] 严艳花. 蓄能器消除柱塞泵流量脉动[J]. 化学工程与装备, 2021(7): 170-171.
YAN Y H. The accumulator eliminates the flow pulsation of the piston pump[J]. Chemical Engineering & Equipment, 2021(7): 170-171.
[17] 李浪, 王海涛, 龚烈航. 皮囊式蓄能器吸收压力脉动的参数分析与试验[J]. 液压与气动, 2012(7): 3-6.