为了提高传统空腔型覆盖层在静压下的吸声性能,设计一种含有螺旋体结构的空腔型吸声覆盖层。在COMSOL中构建了吸声覆盖层的声学计算模型,研究了在不同静压作用下传统空腔型覆盖层与含螺旋体空腔型覆盖层的最大形变量与吸声性能。结果表明,在静水压力作用下,含螺旋体空腔型覆盖层的最大形变量要比传统空腔型覆盖层的最大形变量要小,最大形变量下降百分比随静压的增大而减小,并且始终保持在20%~30%之间,对比2种吸声覆盖层的吸声性能发现,螺旋体的加入,使覆盖层在100~10000 Hz频段内的平均吸声系数提高了20%~25%,平均吸声系数提升百分比随静压的增大而增大。
In order to improve the sound absorption performance of the traditional cavity covering layer under static pressure, a kind of cavity covering layer with spiral structure was designed. The acoustic calculation model of the sound absorbing coating was constructed in COMSOL, and the maximum shape variable and the sound absorbing performance of the traditional cavity coating and the heliform cavity coating were studied under different static pressure. The results show that: Under the action of hydrostatic pressure, the maximum shape variable of the cavity covering layer with spiral body is smaller than that of the traditional cavity covering layer, and the decline percentage of the maximum shape variable decreases with the increase of static pressure, and it is always between 20%~30%. Comparing the sound absorption performance of the two kinds of sound absorbing covers, it is found that the addition of spiral body, the average sound absorption coefficient of the covering layer in the 100~10000 Hz band is increased by 20%~25%, and the increase percentage of the average sound absorption coefficient increases with the increase of static pressure.
2025,47(1): 113-119 收稿日期:2024-2-29
DOI:10.3404/j.issn.1672-7649.2025.01.020
分类号:U668.3
基金项目:国家自然科学基金资助项目(12072058)
作者简介:应江(1998-),男,硕士,研究方向为水下覆盖层分析与设计
参考文献:
[1] 任春晶. 吸声覆盖层与复合材料隔音板声学性能分析与优化设计[D]. 大连: 大连理工大学, 2020.
[2] 叶韩峰, 陶猛, 李俊杰. 基于COMSOL的空腔声学覆盖层的斜入射吸声性能分析[J]. 振动与冲击, 2019, 38(12): 213-218.
YE H F, TAO M, LI J J. Oblique incidence sound absorption performance analysis of cavity acoustic cladding based on COMSOL[J]. Journal of Vibration and Shock, 2019, 38(12): 213-218.
[3] 叶韩峰, 陶猛, 李俊杰. 有限长周期性结构的水下声学性能分析[J]机械设计与制造, 2020, (12): 103-107+112.
[4] YE C, LIU X, XIN F, et al. Influence of hole shape on sound absorption of underwater anechoic layers[J]. Journal of Sound and Vibration, 2018, 426: 54-74.
[5] 杨立军, 张冲, 楼京俊, 等. 静压下多层材料椭球形空腔吸声覆盖层的吸声性能分析[J]. 舰船科学技术, 2017, 39(5): 54-57.
YANG L J, ZHANG C, LOU J J, et al. Analysis of sound absorption performance of multi-layer material ellipsoidal cavity covering layer under static pressure[J]. Ship Science and Technology, 2017, 39(5): 54-57.
[6] 陶猛, 卓琳凯. 静水压力下吸声覆盖层的声学性能分析[J]. 上海交通大学学报, 2011, 45 (9): 1340-1344+1350.
TAO M, ZHUO L K. Effect of hydrostatic pressure on acoustic performance of sound absorption coating[J]. Journal of Shanghai Jiao Tong University, 2011, 45(9): 1340–1344, 1350.
[7] 董文凯, 陈美霞. 静压下考虑腔压的吸声覆盖层吸声性能分析[J]. 中国舰船研究, 2022, 17(1): 132-140.
DONG W K, CHEN M X. Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure[J]. Chinese Journal of Ship Research, 2022, 17(1): 132-140.
[8] 张冲, 耿洪健. 静压下吸声覆盖层的遗传优化方法[J]. 四川兵工学报, 2015, 36(10): 150-153+160.
ZHANG C, GENG H J. Genetic optimization method of sound absorbing overlay under static pressure[J]. Sichuan Ordnance Engineering Journal, 2015, 36(10): 150-153+160.
[9] ZHANG Z F, LI S D, WANG J X, et al. Low-frequency broadband absorption of semi-active composite anechoic coating with subwavelength piezoelectric arrays in hydrostatic environments[J]. Results in Physics, 2021, 30: 104879.
[10] 师康康, 靳国永, 叶天贵, 等. 含空腔的功能梯度声学覆盖层水下吸声特性[J]. 声学学报, 2021, 46(3): 394-404.
SHI K K, JIN G Y, YE T G, et al. Underwater sound absorption performance of functionally graded anechoic coating with cavities[J]. Acta Acustica, 2021, 46(3): 394-404.