设计基于云计算的船舶云数据运维系统,通过集成云计算、大数据分析和物联网技术提升船舶运维效率和安全性。系统应用处理能力高于27×104 tpmC的数据库引擎管理船舶状态数据,支持实时数据采集、存储与分析,具备数据安全防护措施,能够实现远程监控和预测性维护,确保船舶航行安全。通过采用残差网络模型进行故障诊断,系统能够精准定位船舶故障,提高运维决策的准确性和及时性。实际应用验证表明,该系统在提高运维效率、保障数据安全等方面表现优异,为现代船舶运维提供了有力支持。
Design a ship cloud data operation and maintenance system based on cloud computing, and improve ship operation and maintenance efficiency and security by integrating cloud computing, big data analysis and Internet of Things technologies. The system employs a database engine with a processing capacity exceeding 270,000 tpmC to manage ship status data, supporting real-time data acquisition, storage, and analysis. It incorporates robust data security measures, enabling remote monitoring and predictive maintenance to ensure the safety of ship navigation. By utilizing a residual network model for fault diagnosis, the system can accurately pinpoint ship faults, improving the accuracy and timeliness of the ship cloud data operation and maintenance system decisions. Practical applications have demonstrated the system's outstanding performance in improving the system efficiency and ensuring data security, providing strong support for modern ship operations and maintenance.
2025,47(1): 163-168 收稿日期:2024-4-18
DOI:10.3404/j.issn.1672-7649.2025.01.029
分类号:U665
作者简介:曹阳(1985-),男,硕士,高级工程师,研究方向为船舶技术管理
参考文献:
[1] LIU X, ZHANG Q, WANG S, et al. Research of ship maintenance management platform based on cloud computing[C]//2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Atlantis Press, 2015.
[2] ZHOU J, DING X, SUN L J, et al. A remote monitoring and maintenance system for industrial robots[C]//Journal of Physics: Conference Series. IOP Publishing, 2022, 2366(1): 012036.
[3] BAI S, YUAN Y, NIU K, et al. Design and implementation of the remote operation and maintenance platform for the combine harvester[J]. Applied Sciences, 2022, 12(15): 7637.
[4] 张圣伦, 张楠. 云计算在网络通信数据智能运维系统中的应用[J]. 现代信息科技, 2022(6): 125-127+132.
ZHANG S L, ZHANG N. Application of cloud computing in intelligent operation and maintenance system of network communication data[J]. Modern Information Technology, 2022(6): 125-127+132.
[5] GRUBIC T, JENNIONS I. Remote monitoring technology and servitised strategies–factors characterising the organisational application[J]. International Journal of Production Research, 2018, 56(6): 2133-2149.
[6] LAZAKIS I, DIKIS K, MICHALA A L, et al. Advanced ship systems condition monitoring for enhanced inspection, maintenance and decision making in ship operations[J]. Transportation Research Procedia, 2016, 14: 1679-1688.
[7] AIELLO G, GIALLANZA A, VACANTE S, et al. Propulsion monitoring system for digitized ship management: preliminary results from a case study[J]. Procedia Manufacturing, 2020, 42: 16-23.
[8] LI G, DENG X, ZHOU M, et al. Research on data monitoring system for intelligent ship[C]//Advanced Manufacturing and Automation IX 9th. Springer Singapore, 2020.
[9] PLAZA-HERNÁNDEZ M, GIL-GONZÁLEZ A B, RODRÍGUEZ-GONZÁLEZ S, et al. Integration of IoT technologies in the maritime industry[C]//Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Springer International Publishing, 2021.
[10] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. 2016 IEee Conference On Computer Vision And Pattern Recognition (CVPR), 2016, 770-778.
[11] MARTELLI M, VIRDIS A, GOTTA A, et al. An outlook on the future marine traffic management system for autonomous ships[J]. IEEE Access, 2021, 9: 157316-157328.